The variation operator of differences of averages over lacunary sequences maps $H^1_w(\mathbb{R})$ to $L^1_w(\mathbb{R})$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 30-36 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f$ be a locally integrable function defined on $\mathbb{R}$, and $(n_k)$ be a lacunary sequence. Define $$A_nf(x)=\frac{1}{n}\int_0^nf(x-t) dt,$$ and let $$\mathcal{V}_{\rho}f(x)=\left(\sum_{k=1}^\infty|A_{n_k}f(x)-A_{n_{k-1}}f(x)|^{\rho}\right)^{1/\rho}.$$ Suppose that $w\in A_p$, $1\leq p<\infty$, and $\rho\geq 2$. Then, there exists a positive constant $C$ such that $$\|\mathcal{V}_{\rho}f\|_{L^1_w}\leq C\|f\|_{H^1_w}$$ for all $f\in H^1_w(\mathbb{R})$.
Keywords: variation operator, weighted Hardy space, $A_p$ weight.
@article{IVM_2024_5_a2,
     author = {S. Demir},
     title = {The variation operator of differences of averages over lacunary sequences maps $H^1_w(\mathbb{R})$ to $L^1_w(\mathbb{R})$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {30--36},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_5_a2/}
}
TY  - JOUR
AU  - S. Demir
TI  - The variation operator of differences of averages over lacunary sequences maps $H^1_w(\mathbb{R})$ to $L^1_w(\mathbb{R})$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 30
EP  - 36
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_5_a2/
LA  - ru
ID  - IVM_2024_5_a2
ER  - 
%0 Journal Article
%A S. Demir
%T The variation operator of differences of averages over lacunary sequences maps $H^1_w(\mathbb{R})$ to $L^1_w(\mathbb{R})$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 30-36
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2024_5_a2/
%G ru
%F IVM_2024_5_a2
S. Demir. The variation operator of differences of averages over lacunary sequences maps $H^1_w(\mathbb{R})$ to $L^1_w(\mathbb{R})$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 30-36. http://geodesic.mathdoc.fr/item/IVM_2024_5_a2/

[1] Demir S., $H^p$ spaces and inequalities in ergodic theory, Ph.D Thesis, University of Illinois at Urbana-Champaign, USA, 1999 | MR | Zbl

[2] Garcia-Cuerva J., “Weighted $H^p$ spaces”, Diss. Math., 162 (1979), 1–63 | MR

[3] Demir S., “Variational inequalities for the differences of averages over lacunary sequences”, New York J. Math., 28 (2022), 1099–1111 | MR | Zbl