Controlled frames in $n$-Hilbert spaces and their tensor products
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 8-29 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The concepts of controlled frame and its dual in $n$-Hilbert space have been introduced and then some of their properties are going to be discussed. Also, we study controlled frame in tensor product of $n$-Hilbert spaces and establish a relationship between controlled frame and bounded linear operator in tensor product of $n$-Hilbert spaces. At the end, we consider the direct sum of controlled frames in $n$-Hilbert space.
Keywords: $n$-normed space, $n$-inner product space, tensor product of Hilbert spaces, frame, dual frame, controlled frame.
@article{IVM_2024_5_a1,
     author = {P. Ghosh and T. K. Samanta},
     title = {Controlled frames in $n${-Hilbert} spaces and their tensor products},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {8--29},
     year = {2024},
     number = {5},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_5_a1/}
}
TY  - JOUR
AU  - P. Ghosh
AU  - T. K. Samanta
TI  - Controlled frames in $n$-Hilbert spaces and their tensor products
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 8
EP  - 29
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_5_a1/
LA  - ru
ID  - IVM_2024_5_a1
ER  - 
%0 Journal Article
%A P. Ghosh
%A T. K. Samanta
%T Controlled frames in $n$-Hilbert spaces and their tensor products
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 8-29
%N 5
%U http://geodesic.mathdoc.fr/item/IVM_2024_5_a1/
%G ru
%F IVM_2024_5_a1
P. Ghosh; T. K. Samanta. Controlled frames in $n$-Hilbert spaces and their tensor products. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 5 (2024), pp. 8-29. http://geodesic.mathdoc.fr/item/IVM_2024_5_a1/

[1] Gabor D., “Theory of communications”, J. Inst. Elect. Engineers, 93:26 (1946), 429–457

[2] Duffin R.J., Schaeffer A.C., “A class of nonharmonic Fourier series”, Trans. Amer. Math. Soc., 72 (1952), 341–366 | DOI | MR | Zbl

[3] Daubechies I., Grossmann A., Mayer Y., “Painless nonorthogonal expansions”, J. Math. Phys., 27:5 (1986), 1271–1283 | DOI | MR | Zbl

[4] Bogdanova I., Vandergheynst P., Antoine J.-P., Jacques L., Morvidone M., “Stereographic wavelet frames on the sphere”, Appl. Comput. Harmonic Anal., 19:2 (2005), 223–252 | DOI | MR | Zbl

[5] Balazs P., Antonie J.-P., Grybos A., “Weighted and controlled frames: mutual relationship and first numerical properties”, Int. J. Wavelets, Multiresolution Inform. Proc., 84:1 (2010), 109–132 | DOI | MR

[6] Rabinson S., Hilbert space and tensor products, Lect. notes (September 8, 1997)

[7] Folland G.B., A Course in abstract harmonic analysis, CRC Press, Boca Raton, 1995 | MR | Zbl

[8] Kadison R.V., Ringrose J.R., Fundamentals of the theory of operator algebras, v. I, Acad. Press, New York, 1983 | MR | Zbl

[9] Diminnie C., Gahler S., White A., “$2$-inner product spaces”, Demonstratio Math., 6:1 (1973), 525–536 | MR

[10] Misiak A., “$n$-inner product spaces”, Math. Nachr., 140 (1989), 299–319 | DOI | MR | Zbl

[11] Arefijamaal A.A., Sadeghi G., “Frames in $2$-inner product spaces”, Iranian J. Math. Sci. Inform., 8:2 (2013), 123–130 | MR | Zbl

[12] Christensen O., An introduction to frames and Riesz bases, Appl. Numer. Harmonic Anal., Birkhauser, Basel, 2003 | DOI | MR | Zbl

[13] Kreyzig E., Introductory Functional Analysis with Applications, Wiley, New York, 1989 | MR

[14] Upender Reddy G., Gopal Reddy N., Krishna Reddy B., “Frame operator and Hilbert-Schmidt Operator in Tensor Product of Hilbert Spaces”, J. Dynam. Syst. Geom. Theor., 7:1 (2009), 61–70 | MR | Zbl

[15] Gunawan H., Mashadi, “On $n$-normed spaces”, Int. J. Math. Math. Sci., 27 (2001), 631–639 | DOI | MR | Zbl

[16] Gunawan H., “On $n$-inner products, $n$-norms, and the Cauchy–Schwarz inequality”, Sci. Math. Jpn., 5 (2001), 47–54 | MR

[17] Ghosh P., Samanta T.K., “Construction of frame relative to $n$-Hilbert space”, J. Linear Topological Algebra, 10:2 (2021), 117–130 | Zbl

[18] Ghosh P., Samanta T.K., “Introduction of frame in tensor product of $n$-Hilbert spaces”, Sahand Comm. Math. Anal., 18:4 (2021), 1–18

[19] Ghosh P., Samanta T.K., “Atomic systems in $n$-Hilbert spaces and their tensor products”, J. Linear Topological Algebra, 10:4 (2021), 241–256 | MR | Zbl