On the absolute convergence of Fourier series of almost periodic functions
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 67-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper investigates sufficient conditions for the absolute convergence of trigonometric Fourier series of almost-periodic functions in the sense of Besikovitch in the case when the Fourier exponents have a single limiting point at infinity. A higher-order modulus of continuity is used as a structural characteristic of the function under consideration.
Keywords: almost-periodic Besikovitch function, Fourier series, function spectrum, modulus of continuity, trigonometric polynomial.
Mots-clés : Fourier coefficients
@article{IVM_2024_4_a6,
     author = {Yu. Kh. Khasanov and F. M. Talbakov},
     title = {On the absolute convergence of {Fourier} series of almost periodic functions},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {67--79},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_4_a6/}
}
TY  - JOUR
AU  - Yu. Kh. Khasanov
AU  - F. M. Talbakov
TI  - On the absolute convergence of Fourier series of almost periodic functions
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 67
EP  - 79
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_4_a6/
LA  - ru
ID  - IVM_2024_4_a6
ER  - 
%0 Journal Article
%A Yu. Kh. Khasanov
%A F. M. Talbakov
%T On the absolute convergence of Fourier series of almost periodic functions
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 67-79
%N 4
%U http://geodesic.mathdoc.fr/item/IVM_2024_4_a6/
%G ru
%F IVM_2024_4_a6
Yu. Kh. Khasanov; F. M. Talbakov. On the absolute convergence of Fourier series of almost periodic functions. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 67-79. http://geodesic.mathdoc.fr/item/IVM_2024_4_a6/

[1] Besicovich A.S., Almost periodic functions, Cembrige Univ. Press, 1932 | MR

[2] Besicovich A.S., “Almost periodic and generalized trigonmationric series”, Acta Math., 57 (1931), 203-292 | DOI | MR

[3] Bor G., Pochti periodicheskie funktsii, Gos. tekhn.-teoretich. izd-vo, M., 1934

[4] Levitan B.M., Pochti-periodicheskie funktsii, Gostekhizdat, M., 1953 | MR

[5] Bredikhina E.A., “Ob absolyutnoi skhodimosti ryadov fure pochti periodicheskikh funktsii”, DAN SSSR, 179:5 (1968), 1023–1026

[6] Musielak J., “O bezwzglednej zbieznosci czeregow Fouriera pewnych funcji prawie okresowich”, Bull. Acad. Polon. Sci. Cl. III, 5 (1957), 9–17

[7] Kuptsov N.P., “Ob absolyutnoi i ravnomernoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii”, Matem. sb., 40:2 (1956), 157–178

[8] Pritula Ya.G., “Pro absolyutnu zbizhnist ryadiv Fure maizhe periodichnykh funktsii”, Visnik Lviv. un-tu, 137:5 (1971), 72–80

[9] Dzhafarov A.S., Mamedov G.A., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii Bezikovicha”, Izv. AN Azerb. SSCR, 1983, no. 5, 8–13

[10] Khasanov Yu.Kh., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii”, Matem. zametki, 94:5 (2013), 745–756 | DOI

[11] Khasanov Yu.Kh., Talbakov F.M., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii Bezikovicha”, Dokl. AN Resp. Tadzh., 61:5 (2018), 813–821

[12] Talbakov F.M., “Ob absolyutnoi skhodimosti ryadov Fure pochti-periodicheskikh funktsii v ravnomernoi metrike”, Dokl. AN Resp. Tadzh., 63:5–6 (2020), 286–292

[13] Talbakov F.M., “Ob absolyutnoi skhodimosti dvoinykh ryadov Fure pochti-periodicheskikh funktsii v ravnomernoi metrike”, Izv vuzov. Matem., 2023, no. 4, 65–75 | MR

[14] Zygmund A., Trigonometrical series, Warszawa-Lwow, 1935 | MR

[15] Stechkin S.B., “Ob absolyutnoi skhodimosti ortogonalnykh ryadov. I”, Matem. sb., 29:1 (1951), 225–232