On infinite spectra of oscillation exponents of third order linear differential equations
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 47-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The research topic of this work is at the junction of the theory of Lyapunov exponents and oscillation theory. In this paper, we study the spectra (i.e., the sets of different values on nonzero solutions) of the exponents of oscillation of signs (strict and nonstrict), zeros, roots, and hyperroots of linear homogeneous differential equations with coefficients continuous on the positive semi-axis. In the first part of the paper, we build a third order linear differential equation with the following property: the spectra of all upper and lower strong and weak exponents of oscillation of strict and non-strict signs, zeros, roots and hyper roots contain a countable set of different essential values, both metrically and topologically. Moreover, all these values are implemented on the same sequence of solutions of the constructed equation, that is, for each solution from this sequence, all of the oscillation exponents coincide with each other. In the construction of the indicated equation and in the proof of the required results, we used analytical methods of the qualitative theory of differential equations and methods from the theory of perturbations of solutions of linear differential equations, in particular, the author's technique for controlling the fundamental system of solutions of such equations in one special case. In the second part of the paper, the existence of a third order linear differential equation with continuum spectra of the oscillation exponents is established, wherein the spectra of all oscillation exponents fill the same segment of the number axis with predetermined arbitrary positive incommensurable ends. It turned out that for each solution of the constructed differential equation, all of the oscillation exponents coincide with each other. The obtained results are theoretical in nature, they expand our understanding of the possible spectra of oscillation exponents of linear homogeneous differential equations.
Keywords: differential equation, linear system, number of zeros, Sergeev frequency.
Mots-clés : oscillation, oscillation exponent
@article{IVM_2024_4_a5,
     author = {A. Kh. Stash},
     title = {On infinite spectra of oscillation exponents of third order linear differential equations},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {47--66},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_4_a5/}
}
TY  - JOUR
AU  - A. Kh. Stash
TI  - On infinite spectra of oscillation exponents of third order linear differential equations
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 47
EP  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_4_a5/
LA  - ru
ID  - IVM_2024_4_a5
ER  - 
%0 Journal Article
%A A. Kh. Stash
%T On infinite spectra of oscillation exponents of third order linear differential equations
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 47-66
%N 4
%U http://geodesic.mathdoc.fr/item/IVM_2024_4_a5/
%G ru
%F IVM_2024_4_a5
A. Kh. Stash. On infinite spectra of oscillation exponents of third order linear differential equations. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 47-66. http://geodesic.mathdoc.fr/item/IVM_2024_4_a5/

[1] Sergeev I.N., “Opredelenie i svoistva kharakteristicheskikh chastot lineinogo uravneniya”, Tr. sem. im. I. G. Petrovskogo, 25, 2006, 249–294

[2] Sergeev I.N., “Kharakteristiki koleblemosti i bluzhdaemosti reshenii lineinoi differentsialnoi sistemy”, Izv. RAN. Ser. matem., 76:1 (2012), 149–172 | DOI | MR

[3] Sergeev I.N., “Zamechatelnoe sovpadenie kharakteristik koleblemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Matem. sb., 204:1 (2013), 119–138 | DOI | MR

[4] Sergeev I.N., “Lyapunovskie kharakteristiki koleblemosti, vraschaemosti i bluzhdaemosti reshenii differentsialnykh sistem”, Tr. sem. im. I. G. Petrovskogo, 31, 2016, 177–219

[5] Stash A. Kh., “Ob otsutstvii svoistva ostatochnosti u silnykh pokazatelei koleblemosti lineinykh sistem”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyut. nauki, 31:1 (2021), 59–69 | MR

[6] Barabanov E.A., Voidelevich A.S., “K teorii chastot Sergeeva nulei, znakov i kornei reshenii lineinykh differentsialnykh uravnenii. I”, Differents. uravneniya, 52:10 (2016), 1302–1320 | DOI

[7] Bykov V.V., “O berovskoi klassifikatsii chastot Sergeeva nulei i kornei reshenii lineinykh differentsialnykh uravnenii”, Differents. uravneniya, 52:4 (2016), 419–425 | DOI | MR

[8] Burlakov D.S., Tsoi S.V., “Sovpadenie polnoi i vektornoi chastot reshenii lineinoi avtonomnoi sistemy”, Tr. sem. im. I. G. Petrovskogo, 30, 2014, 75–93

[9] Stash A.Kh., “Svoistva pokazatelei koleblemosti reshenii lineinykh avtonomnykh differentsialnykh sistem”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyut. nauki, 29:4 (2019), 558–568 | MR

[10] Sergeev I.N., “Metricheski tipichnye i suschestvennye znacheniya pokazatelei lineinykh sistem”, Differents. uravneniya, 47:11 (2011), 1661–1662

[11] Sergeev I.N., “Topologicheski tipichnye i suschestvennye znacheniya pokazatelei lineinykh sistem”, Differents. uravneniya, 48:11 (2012), 1567–1568

[12] Barabanov E.A., Voidelevich A.S., “Cpektry verkhnikh chastot Sergeeva nulei i znakov lineinykh differentsialnykh uravnenii”, Dokl. NAN Belarusi, 60:1 (2016), 24–31 | MR

[13] Barabanov E.A., Voidelevich A.S., “K teorii chastot Sergeeva nulei, znakov i kornei reshenii lineinykh differentsialnykh uravnenii. II”, Differents. uravneniya, 52:12 (2016), 1595–1609 | DOI

[14] Voidelevich A.S., “O spektrakh verkhnikh chastot Sergeeva lineinykh differentsialnykh uravnenii”, Zhurn. Belorussk. gos. un-ta. Matem. Informatika, 2019, no. 1, 28–32 | MR

[15] Goritskii A. Yu., Fisenko T. N., “Kharakteristicheskie chastoty nulei summy dvukh garmonicheskikh kolebanii”, Differents. uravneniya, 48:4 (2012), 479–486 | MR

[16] Smolentsev M.V., “Primer periodicheskogo differentsialnogo uravneniya tretego poryadka, spektr chastot kotorogo soderzhit otrezok”, Differents. uravneniya, 50:10 (2014), 1413–1417 | DOI | MR

[17] Stash A.Kh., “O suschestvovanii lineinogo differentsialnogo uravneniya tretego poryadka s kontinualnymi spektrami polnoi i vektornoi chastot”, Vestn. Adyg. gos. un-ta. Ser. Estestv.-matem. i tekhn. nauki, 122:3 (2013), 9–17

[18] Smolentsev M.V., “Suschestvovanie lineinogo uravneniya tretego poryadka so schetnym spektrom chastot”, Tr. sem. im. I.G. Petrovskogo, 30, 2014, 242–251

[19] Stash A.Kh., “O suschestvennykh znacheniyakh kharakteristik koleblemosti reshenii lineinykh differentsialnykh uravnenii tretego poryadka”, Vestn. Adyg. gos. un-ta. Ser. Estestv.-matem. i tekhn. nauk., 119:2 (2013), 9–23

[20] Stash A.Kh., “O spektrakh polnykh i vektornykh chastot lineinykh differentsialnykh uravneniya tretego poryadka”, Tr. sem. im. I.G. Petrovskogo, 30, 2014, 252–269

[21] Filippov A.F., Vvedenie v teoriyu differentsialnykh uravnenii, Editorial URSS, M., 2004

[22] Sergeev I.N., Differentsialnye uravneniya, Izdat. tsentr «Akademiya», M., 2013