Keywords: inequality
@article{IVM_2024_4_a4,
author = {N. A. Rather and A. Bhat and M. Shafi},
title = {Sharpening of {Tur\'an-type} inequality for polynomials},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {39--46},
year = {2024},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_4_a4/}
}
N. A. Rather; A. Bhat; M. Shafi. Sharpening of Turán-type inequality for polynomials. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 39-46. http://geodesic.mathdoc.fr/item/IVM_2024_4_a4/
[1] Bernstein S., “Sur l'ordre de la meilleure approximation des functions continues parles polyn$\hat{o}$mes de degr$\grave{e}$ donné”, Mem. Cl. Sci. Acad. Roy Belg., 4 (1912), 1–103 | MR
[2] Turán P., “Über die Ableitung von Polynomen”, Compositio Math., 7 (1940), 89–95 | MR
[3] Govil N.K., “On the derivative of a polynomial”, Proc. Amer. Math. Soc., 41:2 (1973), 543–546 | DOI | MR
[4] Govil N.K., “Some inequalities for derivatives of polynomials”, J. Approx. Theory, 66:1 (1991), 29–35 | DOI | MR
[5] Milovanović G.V., Mitrinović D.S., Rassias Th.M., Topics in Polynomials: Extremal Problems, Inequalities, Zeros, World Scientific Publ. Co., Singapore, 1994 | MR
[6] Rahman Q.I., Schmeisser G., Analytic Theory of Polynomials, Oxford Univ. Press Inc., New York, 2002 | MR
[7] Jain V.K., “On the Derivative of a Polynomial”, Bull. Math. Soc. Sci. Math. Roumanie Tome, 59:4 (2016), 339–347 | MR
[8] Mir A., “A Turán-type inequality for polynomials”, Indian J. Pure Appl. Math., 52 (2021), 911–914 | DOI | MR
[9] Osserman R., “A sharp Schwarz inequality on the boundary”, Proc. Amer. Math. Soc., 128:12 (2000), 3513–3517 | DOI | MR
[10] Frappier C., Rahman Q.I., Ruscheweyh St., “New inequalities for polynomials”, Trans. Amer. Math. Soc., 288:1 (1985), 69–99 | DOI | MR