On the existence of an eigenvalue of the generalized Friedrichs model
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 31-38 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a family of bounded self-adjoint matrix operators (generalized Friedrichs models) acting on the direct sum of one-particle and two-particle subspaces of the Fock space. Conditions for the existence of eigenvalues of the matrix operators are obtained.
Keywords: Friedrichs model, subspace of the Fock space, eigenvalue, essential spectrum.
@article{IVM_2024_4_a3,
     author = {M. I. Muminov and U. R. Shadiev},
     title = {On the existence of an eigenvalue of the generalized {Friedrichs} model},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {31--38},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_4_a3/}
}
TY  - JOUR
AU  - M. I. Muminov
AU  - U. R. Shadiev
TI  - On the existence of an eigenvalue of the generalized Friedrichs model
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 31
EP  - 38
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_4_a3/
LA  - ru
ID  - IVM_2024_4_a3
ER  - 
%0 Journal Article
%A M. I. Muminov
%A U. R. Shadiev
%T On the existence of an eigenvalue of the generalized Friedrichs model
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 31-38
%N 4
%U http://geodesic.mathdoc.fr/item/IVM_2024_4_a3/
%G ru
%F IVM_2024_4_a3
M. I. Muminov; U. R. Shadiev. On the existence of an eigenvalue of the generalized Friedrichs model. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 31-38. http://geodesic.mathdoc.fr/item/IVM_2024_4_a3/

[1] Tretter C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, 2008 | MR

[2] Mogilner A.I., “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators$:$ problems and results”, Advances in Societ Math., 5 (1991), 139–194 | MR

[3] Friedrichs K.O., Proceedings of the Summer Seminar (Boulder, Colorado, 1960), Lectures in Applied Mathematics, III, ed. M. Kac, AMS, Providence, R.I., 1965 | MR

[4] Malishev V.A. and Minlos R.A., Linear Infinite-Particle Operators, Translations of Mathematical Monographs, 143, AMS, Providence, RI, 1995 | DOI | MR

[5] Minlos R.A. and Spohn H., “The three-body problem in radioactive decay: The case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, AMS, Providence, RI, 1996, 159–193 | MR

[6] Hübner M. and Spohn H., “Spectral properties of the spin-boson Hamiltonian”, Ann. Inst. H. Poincaré Phys. Théor., 62:3 (1995), 289–323 | MR

[7] Spohn H., “Ground state(s) of the spin-boson Hamiltonian”, Comm. Math. Phys., 123:2 (1989), 277–304 | DOI | MR

[8] Zhukov Yu.V., Minlos R.A., “Spektr i rasseyanie v modeli \textquotedblleftspin-bozon\textquotedblright s ne bolee chem tremya fotonami”, TMF, 103:1 (1995), 63–81 | MR

[9] Muminov M., Neidhardt H., and Rasulov T., “On the spectrum of the lattice spin-boson Hamiltonian for any coupling: $1$D case”, J. Math. Phys., 56 (2015), 053507 | DOI | MR

[10] Muminov M.I., Rasulov T.H., “On the eigenvalues of a $2\times2$ block operator matrix”, Opuscula Math., 35:3 (2015), 371–395 | DOI | MR

[11] Muminov M.I., Rasulov T.H., “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77 | MR

[12] Muminov M.I., Rasulov T.H., “Universality of the discrete spectrum asymptotics of the three-particle Schrödinger operator on a lattice”, Nanosystems: Physics, Chemistry, Mathematics, 6:2 (2015), 280–293 | DOI | MR

[13] Muminov M.I., Rasulov T.H., Tosheva N.A., “Analysis of the discrete spectrum of the family spectrum of $3\times3$ operator matrices”, Comm. Math. Anal., 23:1 (2020), 17–37 | MR

[14] Rasulov T.H., Dilmurodov E.B., “Eigenvalues and virtual levels of a family of $2 \times 2$ operator matrices”, Methods Funct. Anal. Topology, 25:3 (2019), 273–281 | MR

[15] Rasulov T.H., Dilmurodov E.B., “Analysis of the spectrum of a $2\times2$ operator matrix. Discrete spectrum asymptotics”, Nanosystems: Physics, Chemistry, Mathematics, 11:2 (2020), 138–144 | DOI | MR

[16] Rasulov T.Kh., Dilmurodov E.B., “Beskonechnost chisla sobstvennykh znachenii operatornykh $2 \times 2$-matrits. Asimptotika diskretnogo spektra”, TMF, 205:3 (2020), 368–390 | DOI | MR

[17] Reed M., Simon B., Methods of Modern Mathematical Physics, v. IV, Analysis of Operators, Acad. Press, New York, 1978 | MR

[18] Albeverio S., Lakaev S.N., Makarov K.A., Muminov Z.I., “The Threshold Effects for the Two-Particle Hamiltonians on Lattices”, Comm. Math. Phys., 262 (2006), 91–115 | DOI | MR