Conditions for the existence of power solutions to a linear difference equation with constant coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 20-30 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

With the help of the formula for the general solution of a difference equation with constant coefficients, it is shown that the set of solutions to this equation contains classical solutions of the type $k^m\lambda^k$. We present necessary and sufficient conditions on the coefficients of the equation and the initial parameters under which such solutions are obtained.
Keywords: difference equation
Mots-clés : conditions on the coefficients of an equation.
@article{IVM_2024_4_a2,
     author = {V. E. Kruglov},
     title = {Conditions for the existence of power solutions to a linear difference equation with constant coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--30},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_4_a2/}
}
TY  - JOUR
AU  - V. E. Kruglov
TI  - Conditions for the existence of power solutions to a linear difference equation with constant coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 20
EP  - 30
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_4_a2/
LA  - ru
ID  - IVM_2024_4_a2
ER  - 
%0 Journal Article
%A V. E. Kruglov
%T Conditions for the existence of power solutions to a linear difference equation with constant coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 20-30
%N 4
%U http://geodesic.mathdoc.fr/item/IVM_2024_4_a2/
%G ru
%F IVM_2024_4_a2
V. E. Kruglov. Conditions for the existence of power solutions to a linear difference equation with constant coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 20-30. http://geodesic.mathdoc.fr/item/IVM_2024_4_a2/

[1] Kruglov V.E., “Postroenie fundamentalnoi sistemy reshenii lineinogo raznostnogo uravneniya konechnogo poryadka”, Ukr. matem. zhurn., 61:6 (2009), 777–794 | MR

[2] Kruglov V.E., “Ob $n$-arifmeticheskikh treugolnikakh, postroennykh dlya polinomialnykh koeffitsientov”, Izv. vuzov. Matem., 2016, no. 8, 35–48

[3] Gelfond A.O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[4] Baloev A.A., Lazareva P.A., “Ob obschem reshenii raznostnogo uravneniya s postoyannymi koeffitsientami”, Izv. vuzov. Matem., 2021, no. 4, 11–24 | MR