. ii) The $\lambda$-jump operator $N_{\lambda}(\Phi\ast f)$ satisfies $$\|\lambda [N_{\lambda}(\Phi\ast f)]^{1/2}\|_{L^p}\leq C_3\|f\|_{H^p}, \frac{n}{n+1}<p\leq 1,$$ uniformly in $\lambda >0$ for some constant $C_3>0$.
@article{IVM_2024_4_a1,
author = {S. Demir},
title = {Variation and $\lambda$-jump inequalities on $H^p$ spaces},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {15--19},
year = {2024},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_4_a1/}
}
S. Demir. Variation and $\lambda$-jump inequalities on $H^p$ spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 15-19. http://geodesic.mathdoc.fr/item/IVM_2024_4_a1/
[1] Bourgain J., “Pointwise ergodic theorems for arithmetic sets”, Publ. Math. Inst. Hautes Études Sci., 69 (1989), 5–41 | DOI | MR
[2] Demir S., $H^p$ Spaces and Inequalities in Ergodic Theory, Ph.D Thesis, Univ. Illinois at Urbana-Champaign, Usa, May 1999 | MR
[3] Demir S., “Inequalities for the variation operator”, Bull. Hellenic Math. Soc., 64 (2020), 92–97 | MR
[4] Demir S., “Variational inequalities for the differences of averages over lacunary sequences”, New York J. Math., 28 (2022), 1099–1111 | MR
[5] Jones R.L., Seeger A., Wright J., “Strong variational and jump inequalities in harmonic analysis”, Trans. AMS, 360:12 (2008), 6711–6742 | DOI | MR
[6] Lépingle D., “La variaition d'order p des semi-martingales”, Z. Wahrscheinlichkeitstheorie Und Verw. Gebiete, 36:4 (1976), 295–316 | DOI | MR
[7] Liu H., “Variational characterization of $H^p$”, Proc. Royal Soc. Edinburgh, 149:5 (2019), 1123–1134 | DOI | MR
[8] Latter R.H., “A characterization of $H^p(\mathbb{R}^n)$ in terms of atoms”, Studia Math., 62:1 (1978), 93–101 | DOI | MR