Variation and $\lambda$-jump inequalities on $H^p$ spaces
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 15-19 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\phi\in \mathscr{S}$ with $\displaystyle\int\phi (x) dx=1$, and define $$\phi_t(x)=\frac{1}{t^n}\phi \left(\frac{x}{t}\right),$$ and denote the function family $\{\phi_t\ast f(x)\}_{t>0}$ by $\Phi\ast f(x)$. Let $\mathcal{J}$ be a subset of $\mathbb{R}$ (or more generally an ordered index set), and suppose that there exists a constant $C_1$ such that $$\sum_{t\in\mathcal{J}} |\hat{\phi}_t(x)|^2<C_1$$ for all $x\in \mathbb{R}^n$. Then i) There exists a constant $C_2>0$ such that $$\|\mathscr{V}_2(\Phi\ast f)\|_{L^p}\leq C_2\|f\|_{H^p}, \frac{n}{n+1}<p\leq 1$$ for all $f\in H^p(\mathbb{R}^n)$, $\dfrac{n}{n+1}. ii) The $\lambda$-jump operator $N_{\lambda}(\Phi\ast f)$ satisfies $$\|\lambda [N_{\lambda}(\Phi\ast f)]^{1/2}\|_{L^p}\leq C_3\|f\|_{H^p}, \frac{n}{n+1}<p\leq 1,$$ uniformly in $\lambda >0$ for some constant $C_3>0$.
Keywords: Hardy space, variation operator, $\lambda$-jump operator.
@article{IVM_2024_4_a1,
     author = {S. Demir},
     title = {Variation and $\lambda$-jump inequalities on $H^p$ spaces},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--19},
     year = {2024},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_4_a1/}
}
TY  - JOUR
AU  - S. Demir
TI  - Variation and $\lambda$-jump inequalities on $H^p$ spaces
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 15
EP  - 19
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_4_a1/
LA  - ru
ID  - IVM_2024_4_a1
ER  - 
%0 Journal Article
%A S. Demir
%T Variation and $\lambda$-jump inequalities on $H^p$ spaces
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 15-19
%N 4
%U http://geodesic.mathdoc.fr/item/IVM_2024_4_a1/
%G ru
%F IVM_2024_4_a1
S. Demir. Variation and $\lambda$-jump inequalities on $H^p$ spaces. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 4 (2024), pp. 15-19. http://geodesic.mathdoc.fr/item/IVM_2024_4_a1/

[1] Bourgain J., “Pointwise ergodic theorems for arithmetic sets”, Publ. Math. Inst. Hautes Études Sci., 69 (1989), 5–41 | DOI | MR

[2] Demir S., $H^p$ Spaces and Inequalities in Ergodic Theory, Ph.D Thesis, Univ. Illinois at Urbana-Champaign, Usa, May 1999 | MR

[3] Demir S., “Inequalities for the variation operator”, Bull. Hellenic Math. Soc., 64 (2020), 92–97 | MR

[4] Demir S., “Variational inequalities for the differences of averages over lacunary sequences”, New York J. Math., 28 (2022), 1099–1111 | MR

[5] Jones R.L., Seeger A., Wright J., “Strong variational and jump inequalities in harmonic analysis”, Trans. AMS, 360:12 (2008), 6711–6742 | DOI | MR

[6] Lépingle D., “La variaition d'order p des semi-martingales”, Z. Wahrscheinlichkeitstheorie Und Verw. Gebiete, 36:4 (1976), 295–316 | DOI | MR

[7] Liu H., “Variational characterization of $H^p$”, Proc. Royal Soc. Edinburgh, 149:5 (2019), 1123–1134 | DOI | MR

[8] Latter R.H., “A characterization of $H^p(\mathbb{R}^n)$ in terms of atoms”, Studia Math., 62:1 (1978), 93–101 | DOI | MR