Lower semicontinuity of distortion coefficients for homeomorphisms of bounded $(1, \sigma)$-weighted $(q,p)$-distortion on Carnot groups
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 84-90 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the locally uniform convergence of homeomorphisms with bounded $(1,\sigma)$-weighted $(q,p)$-distortion to a limit homeomorphism. Under some additional conditions we prove that the limit homeomorphism is a mapping with bounded $(1,\sigma)$-weighted $(q,p)$-distortion. Moreover, we obtain the property of lower semicontinuity of distortion characteristics of homeomorphisms.
Keywords: semicontinuity from below, homeomorphism with bounded $(1,\sigma)$-weighted $(q,p)$-distortion
Mots-clés : Carnot group.
@article{IVM_2024_3_a6,
     author = {S. K. Vodopyanov and D. A. Sboev},
     title = {Lower semicontinuity of distortion coefficients for homeomorphisms of bounded $(1, \sigma)$-weighted $(q,p)$-distortion on {Carnot} groups},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {84--90},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_3_a6/}
}
TY  - JOUR
AU  - S. K. Vodopyanov
AU  - D. A. Sboev
TI  - Lower semicontinuity of distortion coefficients for homeomorphisms of bounded $(1, \sigma)$-weighted $(q,p)$-distortion on Carnot groups
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 84
EP  - 90
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_3_a6/
LA  - ru
ID  - IVM_2024_3_a6
ER  - 
%0 Journal Article
%A S. K. Vodopyanov
%A D. A. Sboev
%T Lower semicontinuity of distortion coefficients for homeomorphisms of bounded $(1, \sigma)$-weighted $(q,p)$-distortion on Carnot groups
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 84-90
%N 3
%U http://geodesic.mathdoc.fr/item/IVM_2024_3_a6/
%G ru
%F IVM_2024_3_a6
S. K. Vodopyanov; D. A. Sboev. Lower semicontinuity of distortion coefficients for homeomorphisms of bounded $(1, \sigma)$-weighted $(q,p)$-distortion on Carnot groups. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 84-90. http://geodesic.mathdoc.fr/item/IVM_2024_3_a6/

[1] Reshetnyak Yu.G., Prostranstvennye otobrazheniya s ogranichennym iskazheniem, Nauka, N., 1982

[2] Heinonen J., Kilpeläinen T., Martio O., Nonlinear potential theory of degenerate elliptic equations, Oxford Univ. Press, New York, 1993 | MR | Zbl

[3] Rickman S., Quasiregular mappings, Springer-Verlag, Berlin, 1993 | MR | Zbl

[4] Vodopyanov S.K., “O zamknutosti klassov otobrazhenii s ogranichennym iskazheniem na gruppakh Karno”, Matem. tr., 5:2 (2002), 92–137 | MR | Zbl

[5] Vodopyanov S.K., Molchanova A.O., “Polunepreryvnost snizu koeffitsienta iskazheniya otobrazheniya s ogranichennym $(\theta,1)$-vesovym $(p,q)$-iskazheniem”, Sib. matem. zhurn., 57:5 (2016), 999–1011 | MR | Zbl

[6] Rotschild L.P., Stein E.M., “Hypoelliptic differential operators and nilpotent groups”, Acta Math., 137 (1976), 247–320 | DOI | MR

[7] Folland G.B., Stein E.M., Hardy spaces on homogeneous groups, Mathematical Notes, 28, Princeton Univ. Press., Princeton, 1982 | MR | Zbl

[8] Bonfiglioli A., Lanconelli E., Uguzonni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer-Verlag, Berlin–Heidelberg, 2007 | MR | Zbl

[9] Pansu P., “Métriques de Carnot–Carathéodory et quasiisométries des espaces symétriques de rang un”, Annal. Math., 129:1 (1989), 1–60 | DOI | MR | Zbl

[10] Vodop$'$yanov S.K., “$\mathcal P$-Differentiability on Carnot groups in different topologies and related topics”, Proc. Anal. Geom., Sobolev Institute Press, Novosibirsk, 2000, 603–670 | Zbl

[11] Vodopyanov S.K., Evseev N.A., “Funktsionalnye i analiticheskie svoistva odnogo klassa otobrazhenii kvazikonformnogo analiza na gruppakh Karno”, Sib. matem. zhurn., 63:2 (2022), 283–315 | Zbl

[12] Brooks J.K., Chacon R.V., “Continuity and compactness of measures”, Adv. Math., 37 (1980), 16–26 | DOI | MR | Zbl

[13] Brooks J.K., Chacon R.V., “Convergence theorems in the theory of diffusions”, Measure Theory Appl., Lect. Notes Math., 1033, Springer, Berlin, 1983, 79–93 | DOI | MR

[14] Ball J.M., Murat F., “Remarks on Chacon's biting lemma”, Proc. Amer. Math. Soc., 107:3 (1989), 655–663 | MR | Zbl