Averaging of a normal system of ordinary differential equations of high frequency with a multipoint boundary value problem on a semi-axis
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 64-69 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A multipoint boundary value problem for a nonlinear normal system of ordinary differential equations with a rapidly time-oscillating right-hand side is considered on a positive time semi-axis. For this problem, which depends on a large parameter (high oscillation frequency), a limiting (averaged) multipoint boundary value problem is constructed and a limiting transition in the Hölder space of bounded vector functions defined on the considered semi-axis is justified. Thus, for normal systems of differential equations in the case of a multipoint boundary value problem, the Krylov–Bogolyubov averaging method on the semi-axis is justified.
Keywords: normal system of ordinary differential equations with high-frequency data, a multipoint boundary value problem on a semi-axis, averaging method.
@article{IVM_2024_3_a4,
     author = {V. B. Levenshtam},
     title = {Averaging of a normal system of ordinary differential equations of high frequency with a multipoint boundary value problem on a semi-axis},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {64--69},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_3_a4/}
}
TY  - JOUR
AU  - V. B. Levenshtam
TI  - Averaging of a normal system of ordinary differential equations of high frequency with a multipoint boundary value problem on a semi-axis
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 64
EP  - 69
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_3_a4/
LA  - ru
ID  - IVM_2024_3_a4
ER  - 
%0 Journal Article
%A V. B. Levenshtam
%T Averaging of a normal system of ordinary differential equations of high frequency with a multipoint boundary value problem on a semi-axis
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 64-69
%N 3
%U http://geodesic.mathdoc.fr/item/IVM_2024_3_a4/
%G ru
%F IVM_2024_3_a4
V. B. Levenshtam. Averaging of a normal system of ordinary differential equations of high frequency with a multipoint boundary value problem on a semi-axis. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 64-69. http://geodesic.mathdoc.fr/item/IVM_2024_3_a4/

[1] Bogolyubov N.N., O nekotorykh statisticheskikh metodakh v matematicheskoi fizike, Izd-vo Akad. nauk USSR, M., 1945 | MR

[2] Bogolyubov N.N., Mitropolskii Yu.A., Asimptoticheskie metody v teorii nelineinykh kolebanii, Fizmatlit, M., 1974 | MR

[3] Mitropolskii Yu.A., Metod usredneniya v nelineinoi mekhanike, Nauk. dumka, Kiev, 1971 | MR

[4] Yudovich V.I., “Vibrodinamika sistem so svyazyami”, Dokl. AN, 354:5 (1997), 622–624

[5] Levenshtam V.B., “Obosnovanie metoda usredneniya dlya sistemy uravnenii s operatorom Nave–Stoksa v glavnoi chasti”, Algebra i analiz, 26:1 (2014), 94–127

[6] Khatskevich V.L., “O printsipe usredneniya v periodicheskoi po vremeni zadache dlya uravnenii Nave–Stoksa s bystro ostsilliruyuschei massovoi siloi”, Matem. zametki, 99:5 (2016), 764–777 | DOI | MR | Zbl

[7] Simonenko I.B., Metod osredneniya v teorii nelineinykh uravnenii parabolicheskogo tipa s prilozheniem k zadacham gidrodinamicheskoi ustoichivosti, Izd-vo Rostovsk. un-ta, Rostov-na-Donu, 1983

[8] Levenshtam V.B., “Asimptoticheskie razlozheniya periodicheskikh reshenii obyknovennykh differentsialnykh uravnenii s bolshimi vysokochastotnymi slagaemymi”, Differents. uravneniya, 44:1 (2008), 52–68 | MR | Zbl

[9] Levenshtam V.B., Differentsialnye uravneniya s bolshimi vysokochastotnymi slagaemymi, Izd-vo YuFU, Rostov-na-Donu, 2010

[10] Levenshtam V.B., “Asimptoticheskoe razlozhenie resheniya zadachi o vibratsionnoi konvektsii”, Zhurn. vychisl. matem. i matem. fiz., 40:9 (2000), 1416–1424 | MR | Zbl

[11] Levenshtam V.B., Shubin P.E., “Obosnovanie metoda usredneniya dlya differentsialnykh uravnenii s bolshimi bystro ostsilliruyuschimi slagaemymi i kraevymi usloviyami”, Matem. zametki, 100:1 (2016), 94–108 | DOI | MR | Zbl

[12] Bigirindavii D., Levenshtam V.B., “Obosnovanie printsipa usredneniya dlya sistemy bystro ostsilliruyuschikh ODU s kraevymi usloviyami”, Vestn. VGU. Ser. Fiz. Matem., 2020, no. 1, 31–37 | MR

[13] Konstantinov M.M., Bainov D.D., “O primenenii metoda usredneniya k nekotorym mnogotochechnym kraevym zadacham”, Soc. de $\c{S}$tiinte Matem. din Rom$\hat{\textup{a}}$nia, 18 (66):3/4 (1974), 307–310

[14] Bigirindavyi D., Levenshtam V.B., “Justification of the averaging method for a system with multipoint boundary value condition”, Springer Proceedings in Mathematics and Statisticsthis, International Scientific Conference on Modern Methods, Problems and Applications of Operator Theory and Harmonic Analysis, OTHA 2020 (Rostov-on-Don, 26 April 2020 – 30 April 2020), 2021, 137–142 | DOI | MR

[15] Bigirindavii D., Levenshtam V.B., “Usrednenie vysokochastotnoi normalnoi sistemy ODU s mnogotochennymi kraevymi usloviyami”, Vladikavkazsk. matem. zhurn., 24:2 (2022), 62–74 | MR

[16] Daletskii Yu.L., Krein M.G., Ustoichivost reshenii differentsialnykh uravnenii v banakhovom prostranstve, Nauka, M., 1970 | MR