Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 50-63 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the upper half-plane, we consider a semilinear hyperbolic partial differential equation of order higher than two. The operator in the equation is a composition of first-order differential operators. The equation is accompanied with Cauchy conditions. The solution is constructed in an implicit analytical form as a solution of some integral equation. The local solvability of this equation is proved by the Banach fixed point theorem and/or the Schauder fixed point theorem. The global solvability of this equation is proved by the Leray–Schauder fixed point theorem. For the problem in question, the uniqueness of the solution is proved and the conditions under which its classical solution exists are established.
Keywords: Cauchy problem, classical solution, local solvability, global solvability, hyperbolic equation, semilinear equation, a priori estimate, fixed point principle.
@article{IVM_2024_3_a3,
     author = {V. I. Korzyuk and J. V. Rudzko},
     title = {Classical solution of the {Cauchy} problem for a semilinear hyperbolic equation in the case of two independent variables},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {50--63},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_3_a3/}
}
TY  - JOUR
AU  - V. I. Korzyuk
AU  - J. V. Rudzko
TI  - Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 50
EP  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_3_a3/
LA  - ru
ID  - IVM_2024_3_a3
ER  - 
%0 Journal Article
%A V. I. Korzyuk
%A J. V. Rudzko
%T Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 50-63
%N 3
%U http://geodesic.mathdoc.fr/item/IVM_2024_3_a3/
%G ru
%F IVM_2024_3_a3
V. I. Korzyuk; J. V. Rudzko. Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 50-63. http://geodesic.mathdoc.fr/item/IVM_2024_3_a3/

[1] Evans L.C., Partial differential equations, 2nd edition, Amer. Math. Sos., Providence, R.I., 2010 | MR | Zbl

[2] Korzyuk V.I., Kozlovskaya I.S., “Reshenie zadachi Koshi dlya giperbolicheskogo uravneniya s postoyannymi koeffitsientami v sluchae dvukh nezavisimykh peremennykh”, Differents. uravneniya, 48:5 (2012), 700–709 | MR | Zbl

[3] Leray J., Hyperbolic Differential Equations, Institute for Advanced Study, Princeton, N.Y., 1953 | MR

[4] Petrovskii I.G., “Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen”, Matem. sb., 2(44):5 (1937), 815–870

[5] Rozhdestvenskii V.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, 2-e izd., Nauka, M., 1978 | MR

[6] Prokhorov A.M. (red.), Fizicheskaya entsiklopediya, v 5 t., v. 3, Bolshaya rossiiskaya entsiklopediya, M., 1992

[7] Korzyuk V.I., Kozlovskaya I.S., Kozlov A.I., “Zadacha Koshi dlya nestrogo giperbolicheskogo uravneniya na poluploskosti s postoyannymi koeffitsientami”, Differents. uravneniya, 51:6 (2015), 714–725 | DOI | MR | Zbl

[8] Petrovskii I.G., “On the diffusion of waves and the lacunas for hyperbolic equations”, Matem. sb., 17(59):3 (1945), 289–370 | MR | Zbl

[9] Galpern S.A., Kondrashov V.E., “Zadacha Koshi dlya differentsialnykh operatorov, raspadayuschikhsya na volnovye mnozhiteli”, Tr. MMO, 16, 1967, 109–136 | MR | Zbl

[10] Korzyuk V., Nguyen V.V., Minh N.T., “Classical solution of the Cauchy problem for biwave equation: Application of Fourier transform”, Math. Modelling Anal., 17:5 (2012), 630–641 | DOI | MR | Zbl

[11] Baranovskaya S.N., Yurchuk N.I., Charie Koku, “Oslablennoe na osi klassicheskoe reshenie tsentralno-simmetricheskoi smeshannoi zadachi dlya trekhmernogo giperbolicheskogo uravneniya chetnogo poryadka v prostranstvakh Geldera”, Differents. uravneniya, 42:10 (2006), 1349–1355 | MR | Zbl

[12] Galpern S.A., “Fundamentalnye resheniya i lakuny kvazigiperbolicheskikh uravnenii”, UMN, 29:2(176) (1974), 154–165 | MR | Zbl

[13] Korzyuk V.I., Stolyarchuk I.I., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka v krivolineinoi polupolose s peremennymi koeffitsientami”, Differents. uravneniya, 53:1 (2017), 77–88 | DOI | MR | Zbl

[14] Korzyuk V.I., Rudzko J.V., “Classical solution of the initial-value problem for a one-dimensional quasilinear wave equation”, XX Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam (Eruginskie chteniya–2022), Mater. mezhdunarodn. nauchn. konf. (Novopolotsk), v. 2, ed. Kozlov A.A., Polotskii gos. un-t, Novopolotsk, 2022, 38–39

[15] Korzyuk V.I., Rudko Ya.V., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differents. uravneniya, 58:2 (2022), 174–184 | Zbl

[16] Korzyuk V.I., Rudzko J.V., “Classical solution of the initial-value problem for a one-dimensional quasilinear wave equation”, Dokl. National Acad. Sci. Belarus, 67:1 (2023), 14–19 | DOI | MR

[17] Korzyuk V.I., Rudzko J.V., “Classical solution of the initial-value problem for a quasilinear wave equation with discontinuous initial conditions”, Dokl. National Acad. Sci. Belarus, 67:3 (2023), 183–188 | DOI | MR

[18] Kharibegashvili S.S., Dzhokhadze O.M., “Zadacha Koshi dlya obobschennogo nelineinogo uravneniya Liuvillya”, Differents. uravneniya, 47:12 (2011), 1741–1753 | MR | Zbl

[19] Mydlarczyk W., “A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$”, Annal. Polonici Math., 68 (1998), 177–189 | DOI | MR | Zbl

[20] Dzhordzhadze G.P., Pogrebkov A.K., Polivanov M.K., “O globalnykh resheniyakh zadachi Koshi dlya uravneniya Liuvillya $\varphi_{tt}(t,x)-\varphi_{xx}(t,x)=1/2m\exp\varphi(t,x)$”, DAN SSSR, 243:2 (1978), 318–320 | MR | Zbl

[21] Karimov Sh.T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Matem., 1995, no. 8, 27–41

[22] Fushchych W.I., Roman O.V., Zhdanov R.Z., “Symmetry and some exact solutions of non-linear polywave equations”, Europ. Lett., 31:2 (2007), 75–79 | DOI | MR

[23] Fuschich V.I., Teoretiko-algebraicheskie issledovaniya v matematicheskoi fizike, Sb. nauchn. tr., ed. Fuschich V.I., In-t matem. AN USSR, Kiev, 1981, 6–28 | MR

[24] Dzhokhadze O.M., “Cmeshannaya zadacha s nelineinym granichnym usloviem dlya polulineinogo uravneniya kolebaniya struny”, Differents. uravneniya, 58:5 (2022), 591–606 | Zbl

[25] Kharibegashvili S.S., Dzhokhadze O.M., “O razreshimosti smeshannoi zadachi s nelineinym granichnym usloviem dlya odnomernogo polulineinogo volnovogo uravneniya”, Matem. zametki, 108:1 (2020), 137–152 | DOI | MR | Zbl

[26] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin–Heidelberg, 1983 | MR | Zbl

[27] Pachpatte B.G., Inequalities for Differential and Integral Equations, Elsevier Sci., 1998 | MR

[28] Mitrinović D.S, Pečarić J.E., Fink A.M., Inequalities Involving Functions and Their Integrals and Derivatives, Springer Netherlands, Dordrecht, 1991 | MR

[29] Trenogin V.A., Funktsionalnyi analiz, 3-e izd., Fizmatlit, M., 2002 | MR

[30] Amelkin V.V., Differentsialnye uravneniya, BGU, Minsk, 2012

[31] Li D., Huang H., “Blow-up phenomena of second-order nonlinear differential equations”, J. Math. Anal. Appl., 276:1 (2002), 184–195 | DOI | MR | Zbl