@article{IVM_2024_3_a3,
author = {V. I. Korzyuk and J. V. Rudzko},
title = {Classical solution of the {Cauchy} problem for a semilinear hyperbolic equation in the case of two independent variables},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {50--63},
year = {2024},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_3_a3/}
}
TY - JOUR AU - V. I. Korzyuk AU - J. V. Rudzko TI - Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 50 EP - 63 IS - 3 UR - http://geodesic.mathdoc.fr/item/IVM_2024_3_a3/ LA - ru ID - IVM_2024_3_a3 ER -
%0 Journal Article %A V. I. Korzyuk %A J. V. Rudzko %T Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2024 %P 50-63 %N 3 %U http://geodesic.mathdoc.fr/item/IVM_2024_3_a3/ %G ru %F IVM_2024_3_a3
V. I. Korzyuk; J. V. Rudzko. Classical solution of the Cauchy problem for a semilinear hyperbolic equation in the case of two independent variables. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 50-63. http://geodesic.mathdoc.fr/item/IVM_2024_3_a3/
[1] Evans L.C., Partial differential equations, 2nd edition, Amer. Math. Sos., Providence, R.I., 2010 | MR | Zbl
[2] Korzyuk V.I., Kozlovskaya I.S., “Reshenie zadachi Koshi dlya giperbolicheskogo uravneniya s postoyannymi koeffitsientami v sluchae dvukh nezavisimykh peremennykh”, Differents. uravneniya, 48:5 (2012), 700–709 | MR | Zbl
[3] Leray J., Hyperbolic Differential Equations, Institute for Advanced Study, Princeton, N.Y., 1953 | MR
[4] Petrovskii I.G., “Über das Cauchysche Problem für Systeme von partiellen Differentialgleichungen”, Matem. sb., 2(44):5 (1937), 815–870
[5] Rozhdestvenskii V.L., Yanenko N.N., Sistemy kvazilineinykh uravnenii i ikh prilozheniya k gazovoi dinamike, 2-e izd., Nauka, M., 1978 | MR
[6] Prokhorov A.M. (red.), Fizicheskaya entsiklopediya, v 5 t., v. 3, Bolshaya rossiiskaya entsiklopediya, M., 1992
[7] Korzyuk V.I., Kozlovskaya I.S., Kozlov A.I., “Zadacha Koshi dlya nestrogo giperbolicheskogo uravneniya na poluploskosti s postoyannymi koeffitsientami”, Differents. uravneniya, 51:6 (2015), 714–725 | DOI | MR | Zbl
[8] Petrovskii I.G., “On the diffusion of waves and the lacunas for hyperbolic equations”, Matem. sb., 17(59):3 (1945), 289–370 | MR | Zbl
[9] Galpern S.A., Kondrashov V.E., “Zadacha Koshi dlya differentsialnykh operatorov, raspadayuschikhsya na volnovye mnozhiteli”, Tr. MMO, 16, 1967, 109–136 | MR | Zbl
[10] Korzyuk V., Nguyen V.V., Minh N.T., “Classical solution of the Cauchy problem for biwave equation: Application of Fourier transform”, Math. Modelling Anal., 17:5 (2012), 630–641 | DOI | MR | Zbl
[11] Baranovskaya S.N., Yurchuk N.I., Charie Koku, “Oslablennoe na osi klassicheskoe reshenie tsentralno-simmetricheskoi smeshannoi zadachi dlya trekhmernogo giperbolicheskogo uravneniya chetnogo poryadka v prostranstvakh Geldera”, Differents. uravneniya, 42:10 (2006), 1349–1355 | MR | Zbl
[12] Galpern S.A., “Fundamentalnye resheniya i lakuny kvazigiperbolicheskikh uravnenii”, UMN, 29:2(176) (1974), 154–165 | MR | Zbl
[13] Korzyuk V.I., Stolyarchuk I.I., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya giperbolicheskogo uravneniya vtorogo poryadka v krivolineinoi polupolose s peremennymi koeffitsientami”, Differents. uravneniya, 53:1 (2017), 77–88 | DOI | MR | Zbl
[14] Korzyuk V.I., Rudzko J.V., “Classical solution of the initial-value problem for a one-dimensional quasilinear wave equation”, XX Mezhdunarodnaya nauchnaya konferentsiya po differentsialnym uravneniyam (Eruginskie chteniya–2022), Mater. mezhdunarodn. nauchn. konf. (Novopolotsk), v. 2, ed. Kozlov A.A., Polotskii gos. un-t, Novopolotsk, 2022, 38–39
[15] Korzyuk V.I., Rudko Ya.V., “Klassicheskoe reshenie pervoi smeshannoi zadachi dlya telegrafnogo uravneniya s nelineinym potentsialom”, Differents. uravneniya, 58:2 (2022), 174–184 | Zbl
[16] Korzyuk V.I., Rudzko J.V., “Classical solution of the initial-value problem for a one-dimensional quasilinear wave equation”, Dokl. National Acad. Sci. Belarus, 67:1 (2023), 14–19 | DOI | MR
[17] Korzyuk V.I., Rudzko J.V., “Classical solution of the initial-value problem for a quasilinear wave equation with discontinuous initial conditions”, Dokl. National Acad. Sci. Belarus, 67:3 (2023), 183–188 | DOI | MR
[18] Kharibegashvili S.S., Dzhokhadze O.M., “Zadacha Koshi dlya obobschennogo nelineinogo uravneniya Liuvillya”, Differents. uravneniya, 47:12 (2011), 1741–1753 | MR | Zbl
[19] Mydlarczyk W., “A singular initial value problem for the equation $u^{(n)}(x) = g(u(x))$”, Annal. Polonici Math., 68 (1998), 177–189 | DOI | MR | Zbl
[20] Dzhordzhadze G.P., Pogrebkov A.K., Polivanov M.K., “O globalnykh resheniyakh zadachi Koshi dlya uravneniya Liuvillya $\varphi_{tt}(t,x)-\varphi_{xx}(t,x)=1/2m\exp\varphi(t,x)$”, DAN SSSR, 243:2 (1978), 318–320 | MR | Zbl
[21] Karimov Sh.T., “Ob odnom metode resheniya zadachi Koshi dlya odnomernogo polivolnovogo uravneniya s singulyarnym operatorom Besselya”, Izv. vuzov. Matem., 1995, no. 8, 27–41
[22] Fushchych W.I., Roman O.V., Zhdanov R.Z., “Symmetry and some exact solutions of non-linear polywave equations”, Europ. Lett., 31:2 (2007), 75–79 | DOI | MR
[23] Fuschich V.I., Teoretiko-algebraicheskie issledovaniya v matematicheskoi fizike, Sb. nauchn. tr., ed. Fuschich V.I., In-t matem. AN USSR, Kiev, 1981, 6–28 | MR
[24] Dzhokhadze O.M., “Cmeshannaya zadacha s nelineinym granichnym usloviem dlya polulineinogo uravneniya kolebaniya struny”, Differents. uravneniya, 58:5 (2022), 591–606 | Zbl
[25] Kharibegashvili S.S., Dzhokhadze O.M., “O razreshimosti smeshannoi zadachi s nelineinym granichnym usloviem dlya odnomernogo polulineinogo volnovogo uravneniya”, Matem. zametki, 108:1 (2020), 137–152 | DOI | MR | Zbl
[26] Gilbarg D., Trudinger N.S., Elliptic Partial Differential Equations of Second Order, 2nd ed., Springer-Verlag, Berlin–Heidelberg, 1983 | MR | Zbl
[27] Pachpatte B.G., Inequalities for Differential and Integral Equations, Elsevier Sci., 1998 | MR
[28] Mitrinović D.S, Pečarić J.E., Fink A.M., Inequalities Involving Functions and Their Integrals and Derivatives, Springer Netherlands, Dordrecht, 1991 | MR
[29] Trenogin V.A., Funktsionalnyi analiz, 3-e izd., Fizmatlit, M., 2002 | MR
[30] Amelkin V.V., Differentsialnye uravneniya, BGU, Minsk, 2012
[31] Li D., Huang H., “Blow-up phenomena of second-order nonlinear differential equations”, J. Math. Anal. Appl., 276:1 (2002), 184–195 | DOI | MR | Zbl