Coefficient inverse problem for an equation of mixed parabolic-hyperbolic type with a non-characteristic line of type change
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 38-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we study the direct and two inverse problems for a model equation of mixed parabolic-hyperbolic type. In the direct problem, the Tricomi problem for this equation with a non-characteristic line of type change is considered. The unknown of the inverse problem is the variable coefficient at the lowest derivative in the parabolic equation. To determine it, two inverse problems are studied: with respect to the solution defined in the parabolic part of the domain, the integral overdetermination condition (inverse problem 1) and one simple observation at a fixed point (inverse problem 2) are given. Theorems on the unique solvability of the formulated problems in the sense of classical solution are proved.
Keywords: inverse problem, mixed-type equation, characteristic, Green's function, contraction mapping principle.
@article{IVM_2024_3_a2,
     author = {D. K. Durdiev},
     title = {Coefficient inverse problem for an equation of mixed parabolic-hyperbolic type with a non-characteristic line of type change},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--49},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_3_a2/}
}
TY  - JOUR
AU  - D. K. Durdiev
TI  - Coefficient inverse problem for an equation of mixed parabolic-hyperbolic type with a non-characteristic line of type change
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 38
EP  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_3_a2/
LA  - ru
ID  - IVM_2024_3_a2
ER  - 
%0 Journal Article
%A D. K. Durdiev
%T Coefficient inverse problem for an equation of mixed parabolic-hyperbolic type with a non-characteristic line of type change
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 38-49
%N 3
%U http://geodesic.mathdoc.fr/item/IVM_2024_3_a2/
%G ru
%F IVM_2024_3_a2
D. K. Durdiev. Coefficient inverse problem for an equation of mixed parabolic-hyperbolic type with a non-characteristic line of type change. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 38-49. http://geodesic.mathdoc.fr/item/IVM_2024_3_a2/

[1] Zolina L.A., “O kraevoi zadache dlya modelnogo uravneniya giperbolicheskogo tipa”, Zhurn. vychisl. matem. i matem. fiz., 6:6 (1966), 991–1001 | MR | Zbl

[2] Bzhikhatlov Kh.G., Nakhushev A.M., “Ob odnoi kraevoi zadache dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Dokl. AN SSSR, 183:2 (1968), 261–264 | MR

[3] Dzhuraev T.D., Kraevye zadachi dlya uravnenii smeshannogo i smeshanno-sostavnogo tipov, Izd-vo Fan, Tashkent, 1979 | MR

[4] Dzhuraev T.D., Sopuev A., Mamazhanov A., Kraevye zadachi dlya uravnenii parabolo-giperbolicheskogo tipa, Izd-vo Fan, Tashkent, 1986 | MR

[5] Sabitov K.B., “K teorii uravnenii smeshannogo parabolo-giperbolicheskogo tipa so spektralnym parametrom”, Differents. uravneniya, 25:1 (1989), 117–126 | MR | Zbl

[6] Sabitov K.B., Pryamye i obratnye zadachi dlya uravnenii smeshannogo parabolo-giperbolicheskogo tipa, Nauka, M., 2016 | MR

[7] Islomov B.I., Ubaidullaev U.Sh., “Obratnaya zadacha dlya uravneniya smeshannogo tipa s operatorom drobnogo poryadka v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2021, no. 3, 29–46 | Zbl

[8] Sabitov K.B., Safin E.M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Izv. vuzov. Matem., 2010, no. 4, 55–62 | Zbl

[9] Sabitov K.B., Safin E.M., “Obratnaya zadacha dlya uravneniya smeshannogo parabolo-giperbolicheskogo tipa”, Matem. zametki, 87:6 (2010), 907–918 | DOI

[10] Sabitov K.B., “Nachalno-granichnaya i obratnye zadachi dlya neodnorodnogo uravneniya smeshannogo parabolo-giperbolicheskogo uravneniya”, Matem. zametki, 102:3 (2017), 415–435 | DOI | MR | Zbl

[11] Sabitov K.B., Sidorov S.N., “Obratnaya zadacha dlya vyrozhdayuschegosya parabolo-giperbolicheskogo uravneniya s nelokalnym granichnym usloviem”, Izv. vuzov. Matem., 2015, no. 1, 46–59 | Zbl

[12] Sidorov S.N., “Obratnye zadachi dlya vyrozhdayuschegosya smeshannogo parabolo-giperbolicheskogo uravneniya po nakhozhdeniyu somnozhitelei pravykh chastei, zavisyaschikh ot vremeni”, Ufimsk. matem. zhurn., 11:1 (2019), 72–86 | Zbl

[13] Sabitov K.B., Sidorov S.N., “Ob odnoi nelokalnoi zadache dlya vyrozhdayuschegosya parabolo-giperbolicheskogo uravneniya”, Differents. uravneniya, 50:3 (2014), 356–365 | DOI | Zbl

[14] Sabitov K.B., Sidorov S.N., “Nachalno-granichnaya zadacha dlya neodnorodnykh vyrozhdayuschikhsya uravnenii smeshannogo parabolo-giperbolicheskogo tipa”, Itogi nauki i tekhn. Ser. Sovremen. matem. i ee pril. Temat. obzor., 137, 2017, 26–60

[15] Prilepko A.I., Kostin A.V., Solovev V.V., “Obratnye zadachi nakhozhdeniya istochnika i koeffitsientov dlya ellipticheskikh i parabolicheskikh uravnenii v prostranstvakh Geldera i Soboleva”, Sib. zhurn. chist. i prikl. matem., 17:3 (2017), 67–85 | Zbl

[16] Ivanchov N.I., “Ob obratnoi zadache odnovremennogo opredeleniya koeffitsientov teploprovodnosti i teploemkosti”, Sib. matem. zhurn., 35:3 (1994), 612–621 | MR | Zbl

[17] Durdiev D.K., Durdiev D.D., “The Fourier spectral method for determining a heat capacity coefficient in a parabolic equation”, Turkish J. Math., 46:8 (2022), 3223–3233 | DOI | MR | Zbl

[18] Denisov A.M., Vvedenie v teoriyu obratnykh zadach, Izd-vo MGU, M., 1994

[19] Prilepko A.I., Orlovsky D.G., Vasin I.A., Methods for solving inverse problems in mathematical physics, Basel Dekker Cop., New York, 2000 | MR

[20] Durdiev D.K., Zhumaev Z.Z., “Memory kernel reconstruction problems in the integro-differential equation of rigid heat conductor”, Math. Methods Appl. Sci., 45:14 (2022), 8374–8388 | DOI | MR | Zbl

[21] Durdiev D.K., Zhumaev Z.Z., “One-dimensional inverse problems of finding the kernel of integrodifferential heat equation in a bounded domain”, Ukr. Math. J., 73:11 (2022), 1723–1740 | DOI | MR | Zbl

[22] Durdiev D.K., Zhumaev Zh.Zh., “Zadacha opredeleniya teplovoi pamyati provodyaschei sredy”, Differents. uravneniya, 56:6 (2020), 796–807 | DOI | Zbl

[23] Romanov V.G., Obratnye zadachi matematicheskoi fiziki, Nauka, M., 1984. | MR

[24] Kabanikhin S.I., Obratnye i nekorrektnye zadachi, Sib. nauchn. izd-vo, Novosibirsk, 2009

[25] Hasanoǧlu A. Hasanov, Romanov V.G., Introduction to inverse problems for differential equations, Springer Intern. Publ., 2017 | MR | Zbl

[26] Durdiev D.K., Totieva Z.D., Kernel determination problems in hyperbolic integro-differential equations, Infosys Sci. Foundation Ser. Math. Sci., Springer Nature, 2023 | DOI | MR

[27] Durdiev D.K., “Ob opredelenii koeffitsienta uravneniya smeshannogo parabolo-giperbolicheskogo tipa s nekharakteristicheskoi liniei izmeneniya”, Differents. uravneniya, 58:12 (2022), 1633–1644 | MR | Zbl

[28] Tikhonov A.N., Samarskii A.A., Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR