Investigation of the asymptotics of the eigenvalues of a second order quasidifferential
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 15-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We construct the asymptotics of the eigenvalues for a quasidifferential Sturm–Liouville boundary value problem on eigenvalues and eigenfunctions considered on a segment $J=[a,b]$, with the boundary conditions of type I on the left – type I on the right, i.e., for a problem of the form (in the explicit form of record) \begin{gather*} p_{22}(t)\Big(p_{11}(t)\big(p_{00}(t)x(t)\big)^{\prime} +p_{10}(t)\big(p_{00}(t)x(t)\big)\Big)^{\prime}+ p_{21}(t)\Big(p_{11}(t)\big(p_{00}(t)x(t)\big)^{\prime} +p_{10}(t)\big(p_{00}(t)x(t)\big)\Big)+ \\ +p_{20}(t)\big(p_{00}(t)x(t)\big)= -\lambda \big(p_{00}(t)x(t)\big) \ (t\in J=[a,b]),\\ p_{00}(a)x(a)=p_{00}(b)x(b)=0, \end{gather*} The requirements for smoothness of the coefficients (i.e., functions $p_{ik}(\cdot):J\to {\mathbb R}, k\in 0:i, i\in0:2)$ in the equation are minimal, namely, these are: functions $p_{ik}(\cdot):J\to {\mathbb R}$ are such that functions $p_{00}(\cdot) $ and $ p_{22}(\cdot) $ are measurable, nonnegative, almost everywhere finite and almost everywhere nonzero, functions $p_{11}(\cdot)$ and $p_{21}(\cdot)$ are also nonnegative on segment $J$, and in addition, functions $p_{11}(\cdot) $ and $ p_{22}(\cdot) $ are essentially bounded on $J,$ functions $ \dfrac{1}{p_{11}(\cdot)}, \dfrac{p_{10}(\cdot)}{p_{11}(\cdot)}, $ $ \dfrac{p_{20}(\cdot)}{p_{22}(\cdot)}, \dfrac{p_{21}(\cdot)}{p_{22}(\cdot)}, \dfrac{1}{\min \{ p_{11}(t) p_{22}(t), 1 \}} $ are summable on segment $J.$ Function $p_{20}(\cdot)$ acts as a potential. It is proved that under the condition of nonoscillation of a homogeneous quasidifferential equation of the second order on $J,$ the asymptotics of the eigenvalues of the boundary value problem under consideration has the form $$ \lambda_k=\big(\pi k\big)^2 \Big(D+O\big({1}\big{/}{k^2}\big)\Big) $$ as $k \rightarrow \infty,$ where $D$ is a real positive constant defined in some way.
Keywords: eigenfunction, eigenvalue, power series, estimate for coefficients, quasidifferential equation, boundary value problem, sum of series, representation of eigenfunctions as sums of power series.
@article{IVM_2024_3_a1,
     author = {M. Yu. Vatolkin},
     title = {Investigation of the asymptotics of the eigenvalues of a second order quasidifferential},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {15--37},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_3_a1/}
}
TY  - JOUR
AU  - M. Yu. Vatolkin
TI  - Investigation of the asymptotics of the eigenvalues of a second order quasidifferential
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 15
EP  - 37
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_3_a1/
LA  - ru
ID  - IVM_2024_3_a1
ER  - 
%0 Journal Article
%A M. Yu. Vatolkin
%T Investigation of the asymptotics of the eigenvalues of a second order quasidifferential
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 15-37
%N 3
%U http://geodesic.mathdoc.fr/item/IVM_2024_3_a1/
%G ru
%F IVM_2024_3_a1
M. Yu. Vatolkin. Investigation of the asymptotics of the eigenvalues of a second order quasidifferential. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 15-37. http://geodesic.mathdoc.fr/item/IVM_2024_3_a1/

[1] Levitan B.M., Sargsyan I.S., “Nekotorye voprosy teorii uravneniya Shturma–Liuvillya”, UMN, 15:1(91) (1960), 3–98 | Zbl

[2] Levitan B.M., Sargsyan I.S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970

[3] Marchenko V.A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977

[4] Kostyuchenko A.G., Sargsyan I.S., Raspredelenie sobstvennykh znachenii (samosopryazhennye obyknovennye differentsialnye operatory), Nauka, M., 1979

[5] Sadovnichii V.A., Teoriya operatorov, Izd-vo MGU, M., 1986

[6] Levitan B.M., Sargsyan I.S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR

[7] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izv. RAN, Ser. Matem., 64:4 (2000), 47–108 | DOI | MR | Zbl

[8] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl

[9] Savchuk A.M., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh operatora Shturma–Liuvillya s singulyarnym potentsialom”, Matem. zametki, 69:2 (2001), 277–285 | DOI | Zbl

[10] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s potentsialami–raspredeleniyami”, Tr. Moskovsk. matem. ob-va, 64, 2003, 159–212 | Zbl

[11] Konechnaya N.N., Safonova T.A., Tagirova R.N., “Asimptotika sobstvennykh znachenii i regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, Vestn. SAFU. Ser. Estestv. nauki, 2016, no. 1, 104–113 | MR

[12] Safonova T.A., Ryabchenko S.V., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s singulyarnym potentsialom”, Vestn. SAFU. Ser. Estestv. nauki, 2016, no. 2, 115–125

[13] Pokornyi Yu.V., Pryadiev V.L., “Nekotorye voprosy kachestvennoi teorii Shturma–Liuvillya na prostranstvennoi seti”, UMN, 59:3(357) (2004), 115–150 | DOI | MR | Zbl

[14] Pokornyi Yu.V., Zvereva M.B., Ischenko A.S., Shabrov C.A., “O neregulyarnom rasshirenii ostsillyatsionnoi teorii spektralnoi zadachi Shturma–Liuvillya”, Matem. zametki, 82:4 (2007), 578–582 | DOI | Zbl

[15] Pokornyi Yu.V., Zvereva M.B., Shabrov C.A., “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, UMN, 63:1(379) (2008), 111–154 | DOI | MR | Zbl

[16] Mitrokhin S.I., Spektralnaya teoriya operatorov: gladkie, razryvnye, summiruemye koeffitsienty, INTUIT, M., 2009

[17] Mitrokhin S.I., “O spektralnykh svoistvakh mnogotochechnoi kraevoi zadachi dlya differentsialnogo operatora nechetnogo poryadka s summiruemym potentsialom”, Arctic Environmental Research, 17:4 (2017), 376–392 | DOI | MR

[18] Mitrokhin S.I., “Asimptotika sobstvennykh znachenii differentsialnogo operatora so znakoperemennoi vesovoi funktsiei”, Izv. vuzov. Matem., 2018, no. 6, 31–47 | MR | Zbl

[19] Mitrokhin S.I., “Ob asimptotike sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka so znakoperemennoi vesovoi funktsiei”, Vestn. Moskovsk. un-ta. Ser. 1. Matem. Mekhan., 2018, no. 6, 46–58 | MR | Zbl

[20] Mitrokhin S.I., “Asimptotika spektra differentsialnogo operatora chetnogo poryadka s razryvnoi vesovoi funktsiei”, Zhurn. SVMO, 22:1 (2020), 48–70

[21] Shin D.Yu., “O resheniyakh lineinogo kvazidifferentsialnogo uravneniya $n$-go poryadka”, Matem. sb., 7(49):3 (1940), 479–532

[22] Shin D.Yu., “O kvazidifferentsialnykh operatorakh v gilbertovom prostranstve”, Matem. sb., 13(55):1 (1943), 39–70 | Zbl

[23] Xiao xia Lv, Ji-jun Ao, Zettl A., “Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem”, J. Math. Anal. Appl., 456:1 (2017), 671–685 | DOI | MR | Zbl

[24] Qinglan Bao, Jiong Sun, Xiaoling Hao, Zettl A., “Characterization of self-adjoint domains for regular even order C-symmetric differential operators”, Electronic J. Qual. Theory Diff. Equat., 62 (2019), 1-17 | MR

[25] Zettl A., Sturm–Liouville Theory, Mathematical Surveys and Monographs, 121, Amer. Math. Soc., 2005 | MR | Zbl

[26] Zettl A., Recent Developments in Sturm–Liouville Theory, De Gruyter, Berlin–Boston, 2021 | MR | Zbl

[27] Jianfang Qin, Kun Li, Zhaowen Zheng, Jinming Cai, “Dependence of eigenvalues of discontinuous fourth-order differential operators with eigenparameter dependent boundary conditions”, J. Nonlinear Math. Phys., 29:4 (2022), 776–793 | DOI | MR | Zbl

[28] Everitt W.N., Marcus L., Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, Mathematical Surveys and Monographs, 61, Amer. Math. Soc., 1999 | MR | Zbl

[29] Eckhardt J., Gestezy F., Nichols R., Teschl G., “Weyl–Titchmarsh theory for Sturm–Liuville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR | Zbl

[30] Everitt W.N., Race D., “The regular representation of singular second order differential expressions using quasi-derivatives”, Proc. London Math. Soc. (3), 65:2 (1992), 383–404 | DOI | MR | Zbl

[31] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969

[32] Derr V.Ya., “Neostsillyatsiya reshenii lineinogo kvazidifferentsialnogo uravneniya”, Izv. in-ta matem. i inform. UdGU, 1999, no. 1(16), 3–105

[33] Derr V.Ya., “Ob adekvatnom opisanii sopryazhennogo operatora”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyut. nauki, 2011, no. 3, 43–63 | Zbl

[34] Vatolkin M.Yu., Derr V.Ya., “O predstavlenii reshenii kvazidifferentsialnogo uravneniya”, Izv. vuzov. Matem., 1995, no. 10, 27–34 | MR | Zbl