@article{IVM_2024_3_a1,
author = {M. Yu. Vatolkin},
title = {Investigation of the asymptotics of the eigenvalues of a second order quasidifferential},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {15--37},
year = {2024},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_3_a1/}
}
M. Yu. Vatolkin. Investigation of the asymptotics of the eigenvalues of a second order quasidifferential. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 15-37. http://geodesic.mathdoc.fr/item/IVM_2024_3_a1/
[1] Levitan B.M., Sargsyan I.S., “Nekotorye voprosy teorii uravneniya Shturma–Liuvillya”, UMN, 15:1(91) (1960), 3–98 | Zbl
[2] Levitan B.M., Sargsyan I.S., Vvedenie v spektralnuyu teoriyu, Nauka, M., 1970
[3] Marchenko V.A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977
[4] Kostyuchenko A.G., Sargsyan I.S., Raspredelenie sobstvennykh znachenii (samosopryazhennye obyknovennye differentsialnye operatory), Nauka, M., 1979
[5] Sadovnichii V.A., Teoriya operatorov, Izd-vo MGU, M., 1986
[6] Levitan B.M., Sargsyan I.S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR
[7] Vinokurov V.A., Sadovnichii V.A., “Asimptotika lyubogo poryadka sobstvennykh znachenii i sobstvennykh funktsii kraevoi zadachi Shturma–Liuvillya na otrezke s summiruemym potentsialom”, Izv. RAN, Ser. Matem., 64:4 (2000), 47–108 | DOI | MR | Zbl
[8] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s singulyarnymi potentsialami”, Matem. zametki, 66:6 (1999), 897–912 | DOI | Zbl
[9] Savchuk A.M., “O sobstvennykh znacheniyakh i sobstvennykh funktsiyakh operatora Shturma–Liuvillya s singulyarnym potentsialom”, Matem. zametki, 69:2 (2001), 277–285 | DOI | Zbl
[10] Savchuk A.M., Shkalikov A.A., “Operatory Shturma–Liuvillya s potentsialami–raspredeleniyami”, Tr. Moskovsk. matem. ob-va, 64, 2003, 159–212 | Zbl
[11] Konechnaya N.N., Safonova T.A., Tagirova R.N., “Asimptotika sobstvennykh znachenii i regulyarizovannyi sled pervogo poryadka operatora Shturma–Liuvillya s $\delta$-potentsialom”, Vestn. SAFU. Ser. Estestv. nauki, 2016, no. 1, 104–113 | MR
[12] Safonova T.A., Ryabchenko S.V., “O sobstvennykh znacheniyakh operatora Shturma–Liuvillya s singulyarnym potentsialom”, Vestn. SAFU. Ser. Estestv. nauki, 2016, no. 2, 115–125
[13] Pokornyi Yu.V., Pryadiev V.L., “Nekotorye voprosy kachestvennoi teorii Shturma–Liuvillya na prostranstvennoi seti”, UMN, 59:3(357) (2004), 115–150 | DOI | MR | Zbl
[14] Pokornyi Yu.V., Zvereva M.B., Ischenko A.S., Shabrov C.A., “O neregulyarnom rasshirenii ostsillyatsionnoi teorii spektralnoi zadachi Shturma–Liuvillya”, Matem. zametki, 82:4 (2007), 578–582 | DOI | Zbl
[15] Pokornyi Yu.V., Zvereva M.B., Shabrov C.A., “Ostsillyatsionnaya teoriya Shturma–Liuvillya dlya impulsnykh zadach”, UMN, 63:1(379) (2008), 111–154 | DOI | MR | Zbl
[16] Mitrokhin S.I., Spektralnaya teoriya operatorov: gladkie, razryvnye, summiruemye koeffitsienty, INTUIT, M., 2009
[17] Mitrokhin S.I., “O spektralnykh svoistvakh mnogotochechnoi kraevoi zadachi dlya differentsialnogo operatora nechetnogo poryadka s summiruemym potentsialom”, Arctic Environmental Research, 17:4 (2017), 376–392 | DOI | MR
[18] Mitrokhin S.I., “Asimptotika sobstvennykh znachenii differentsialnogo operatora so znakoperemennoi vesovoi funktsiei”, Izv. vuzov. Matem., 2018, no. 6, 31–47 | MR | Zbl
[19] Mitrokhin S.I., “Ob asimptotike sobstvennykh znachenii differentsialnogo operatora chetvertogo poryadka so znakoperemennoi vesovoi funktsiei”, Vestn. Moskovsk. un-ta. Ser. 1. Matem. Mekhan., 2018, no. 6, 46–58 | MR | Zbl
[20] Mitrokhin S.I., “Asimptotika spektra differentsialnogo operatora chetnogo poryadka s razryvnoi vesovoi funktsiei”, Zhurn. SVMO, 22:1 (2020), 48–70
[21] Shin D.Yu., “O resheniyakh lineinogo kvazidifferentsialnogo uravneniya $n$-go poryadka”, Matem. sb., 7(49):3 (1940), 479–532
[22] Shin D.Yu., “O kvazidifferentsialnykh operatorakh v gilbertovom prostranstve”, Matem. sb., 13(55):1 (1943), 39–70 | Zbl
[23] Xiao xia Lv, Ji-jun Ao, Zettl A., “Dependence of eigenvalues of fourth-order differential equations with discontinuous boundary conditions on the problem”, J. Math. Anal. Appl., 456:1 (2017), 671–685 | DOI | MR | Zbl
[24] Qinglan Bao, Jiong Sun, Xiaoling Hao, Zettl A., “Characterization of self-adjoint domains for regular even order C-symmetric differential operators”, Electronic J. Qual. Theory Diff. Equat., 62 (2019), 1-17 | MR
[25] Zettl A., Sturm–Liouville Theory, Mathematical Surveys and Monographs, 121, Amer. Math. Soc., 2005 | MR | Zbl
[26] Zettl A., Recent Developments in Sturm–Liouville Theory, De Gruyter, Berlin–Boston, 2021 | MR | Zbl
[27] Jianfang Qin, Kun Li, Zhaowen Zheng, Jinming Cai, “Dependence of eigenvalues of discontinuous fourth-order differential operators with eigenparameter dependent boundary conditions”, J. Nonlinear Math. Phys., 29:4 (2022), 776–793 | DOI | MR | Zbl
[28] Everitt W.N., Marcus L., Boundary value problems and symplectic algebra for ordinary differential and quasi-differential operators, Mathematical Surveys and Monographs, 61, Amer. Math. Soc., 1999 | MR | Zbl
[29] Eckhardt J., Gestezy F., Nichols R., Teschl G., “Weyl–Titchmarsh theory for Sturm–Liuville operators with distributional potentials”, Opuscula Math., 33:3 (2013), 467–563 | DOI | MR | Zbl
[30] Everitt W.N., Race D., “The regular representation of singular second order differential expressions using quasi-derivatives”, Proc. London Math. Soc. (3), 65:2 (1992), 383–404 | DOI | MR | Zbl
[31] Naimark M.A., Lineinye differentsialnye operatory, Nauka, M., 1969
[32] Derr V.Ya., “Neostsillyatsiya reshenii lineinogo kvazidifferentsialnogo uravneniya”, Izv. in-ta matem. i inform. UdGU, 1999, no. 1(16), 3–105
[33] Derr V.Ya., “Ob adekvatnom opisanii sopryazhennogo operatora”, Vestn. Udmurtsk. un-ta. Matem. Mekhan. Kompyut. nauki, 2011, no. 3, 43–63 | Zbl
[34] Vatolkin M.Yu., Derr V.Ya., “O predstavlenii reshenii kvazidifferentsialnogo uravneniya”, Izv. vuzov. Matem., 1995, no. 10, 27–34 | MR | Zbl