Integrability of series with respect to multiplicative systems and generalized derivatives
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 3-14 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We give some necessary and sufficient conditions for the convergence of generalized derivatives of sums of series with respect to multiplicative systems and the corresponding Fourier series. These conditions are counterparts of trigonometric results of S. Sheng, W.O. Bray and $\check{C}$.V. Stanojević and extend some results of F. Móricz proved for Walsh–Fourier series.
Keywords: multiplicative system, $L^1$-integrability, generalized derivative.
Mots-clés : $L^1$-convergence
@article{IVM_2024_3_a0,
     author = {N. Yu. Agafonova and S. S. Volosivets},
     title = {Integrability of series with respect to multiplicative systems and generalized derivatives},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--14},
     year = {2024},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_3_a0/}
}
TY  - JOUR
AU  - N. Yu. Agafonova
AU  - S. S. Volosivets
TI  - Integrability of series with respect to multiplicative systems and generalized derivatives
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 3
EP  - 14
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_3_a0/
LA  - ru
ID  - IVM_2024_3_a0
ER  - 
%0 Journal Article
%A N. Yu. Agafonova
%A S. S. Volosivets
%T Integrability of series with respect to multiplicative systems and generalized derivatives
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 3-14
%N 3
%U http://geodesic.mathdoc.fr/item/IVM_2024_3_a0/
%G ru
%F IVM_2024_3_a0
N. Yu. Agafonova; S. S. Volosivets. Integrability of series with respect to multiplicative systems and generalized derivatives. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 3 (2024), pp. 3-14. http://geodesic.mathdoc.fr/item/IVM_2024_3_a0/

[1] Stanojević Č.V., Stanojević V.B., “Generalizations of the Sidon–Telyakovskii theorem”, Proc. Amer. Math. Soc., 101:4 (1987), 679–684 | MR | Zbl

[2] Telyakovskii S.A., “Ob odnom dostatochnom uslovii Sidona integriruemosti trigonometricheskikh ryadov”, Matem. zametki, 14:3 (1973), 317–328 | MR | Zbl

[3] Sheng S., “The extension of the theorems of C.V. Stanojević and V.B. Stanojević”, Proc. Amer. Math. Soc., 110:4 (1990), 895–904 | DOI | MR | Zbl

[4] Bray W.O., Stanojević Č.V., “Tauberian $L^1$-convergence classes of Fourier series”, Trans. Amer. Math. Soc., 275:1 (1983), 59–69 | MR | Zbl

[5] Móricz F., “Sidon-type inequalities”, Publ. Inst. Math. (Beograd), 48(62) (1990), 101–109 | MR | Zbl

[6] Golubov B.I., Efimov A.V., Skvortsov V.A., Ryady i preobrazovaniya Uolsha. Teoriya i primeneniya, Nauka, M., 1987 | MR

[7] Agaev G.N., Vilenkin N.Ya., Dzhafarli G.M., Rubinshtein A.I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, Elm, Baku, 1981 | MR

[8] Vilenkin N.Ya., “Ob odnom klasse polnykh ortonormalnykh sistem”, Izv. AN SSSR. Ser. matem., 11:4 (1947), 363–400 | Zbl

[9] Pal J., Simon P., “On a generalization of the concept of derivative”, Acta Math. Acad. Sci. Hungar., 29:1-2 (1977), 155–164 | DOI | MR | Zbl

[10] Volosivets S.S., “Priblizhenie funktsii ogranichennoi $p$-fluktuatsii polinomami po multiplikativnym sistemam”, Anal. Math., 21:1 (1995), 61–77 | DOI | MR | Zbl

[11] Schipp F., Wade W.R., Simon P., Walsh series. An introduction to dyadic analysis, Akad. Kiado, Budapest, 1990 | MR

[12] Volosivets S.S., Likhacheva T.V., “Neravenstva tipa Sidona i silnaya approksimatsiya summami Fure po multiplikativnym sistemam”, Sib. matem. zhurn., 57:3 (2016), 617–631 | MR | Zbl

[13] Móricz F., “On $L^1$-convergence of Walsh–Fourier series. II”, Acta Math. Acad. Sci. Hungar., 58:1-2 (1991), 203–210 | DOI | MR | Zbl

[14] Móricz F., “On $L^1$-convergence of Walsh–Fourier series. I”, Rend. Circ. Matem. Palermo. Ser. 2, 38:3 (1989), 411–418 | DOI | MR | Zbl

[15] Stanojević Č.V., “Classes of $L^1$-convergence of Fourier and Fourier–Stieltjes series”, Proc. Amer. Math. Soc., 82:2 (1981), 209–215 | MR | Zbl