Transformation model of the dynamic deformation of an elongated cantilever plate mounted on an elastic support element
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 91-99 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A transformation model of the dynamic deformation of an elongated orthotropic composite rod-type plate, consisting of two sections (fastened and free) along its length, is proposed. In the free section, the orthotropic axes of the material do not coincide with the axes of the Cartesian coordinate system chosen for the plate, and in the fastened section, the displacements of points of the contact's boundary surface (rigid connection) with the elastic support element are considered to be known. The constructed model is based on the use for the free section of the relations of the refined shear model of S.P. Timoshenko, compiled for rods in a geometrically nonlinear approximation without taking into account lateral strain deformations. For the section fastened on the elastic support element, a one-dimensional shear deformation model is constructed taking into account lateral strain deformations, which is transformed into another model by satisfying the conditions of kinematic coupling with the elastic support element with given displacements of the interface points with the plate. The conditions for the kinematic coupling of the free and fastened sections of the plate are formulated. Based on the Hamilton–Ostrogradsky variational principle, the corresponding equations of motion and boundary conditions, as well as force conditions for the coupling of sections, are derived. The constructed model is intended to simulate natural processes and structures when solving applied engineering problems aimed at developing innovative oscillatory biomimetic propulsors.
Keywords: elongated rod-type plate, orthotropic composite material, anisotropy, free and fixed sections, geometric nonlinearity, S.P. Timoshenko model, kinematic and force conditions for coupling sections.
Mots-clés : equations of motion
@article{IVM_2024_2_a6,
     author = {V. N. Paimushin and A. N. Nuriev and S. F. Chumakova},
     title = {Transformation model of the dynamic deformation of an elongated cantilever plate mounted on an elastic support element},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {91--99},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_2_a6/}
}
TY  - JOUR
AU  - V. N. Paimushin
AU  - A. N. Nuriev
AU  - S. F. Chumakova
TI  - Transformation model of the dynamic deformation of an elongated cantilever plate mounted on an elastic support element
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 91
EP  - 99
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_2_a6/
LA  - ru
ID  - IVM_2024_2_a6
ER  - 
%0 Journal Article
%A V. N. Paimushin
%A A. N. Nuriev
%A S. F. Chumakova
%T Transformation model of the dynamic deformation of an elongated cantilever plate mounted on an elastic support element
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 91-99
%N 2
%U http://geodesic.mathdoc.fr/item/IVM_2024_2_a6/
%G ru
%F IVM_2024_2_a6
V. N. Paimushin; A. N. Nuriev; S. F. Chumakova. Transformation model of the dynamic deformation of an elongated cantilever plate mounted on an elastic support element. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 91-99. http://geodesic.mathdoc.fr/item/IVM_2024_2_a6/

[1] Logvinovich G.V., “Gidrodinamika plavaniya ryb”, Bionika, 7 (1973), 3–8

[2] Wu T.Y.-T., “Swimming of a waving plate”, J. Fluid Mech., 10:3 (1961), 321–344 | DOI | MR | Zbl

[3] Wu X., Zhang X., Tian X., Li X., Lu W., “A review on fluid dynamics of flapping foils”, Ocean Engineering, 195 (2020), 106712 | DOI

[4] Siekmann J., “Theoretical studies of sea animal locomotion, 1”, Ingenieur-Archiv, 31 (1962), 214–228 | DOI

[5] Nuriev A.N., Egorov A.G., “Asymptotic theory of a flapping wing of a circular cross-section”, J. Fluid Mech., 941 (2022), A23 | DOI | MR | Zbl

[6] Nuriev A.N., Egorov A.G., Zaitseva O.N., Kamalutdinov A.M., “Asymptotic Study of the Aerohydrodynamics of a Flapping Cylindrical Wing in the High-Frequency Approximation”, Lobachevskii J. Math., 43:8 (2022), 2250–2256 | DOI | MR | Zbl

[7] Kamalutdinov A.M., Paimushin V.N., “Utochnennye geometricheski nelineinye uravneniya dvizheniya udlinennoi plastiny sterzhnevogo tipa”, Izv. vuzov. Matem., 9 (2016), 84–89 | MR | Zbl

[8] Paimushin V.N., Kamalutdinov A.M., “Refined Geometrically Nonlinear and Linear Equations of Motion of an Elongated Rod-type Plate”, Lobachevskii J. Math., 44:3 (2023), 4461–4468 | MR

[9] Paimushin V.N., Shalashilin V.I., “Sonsistent variant of continuum deformation theory in the quadratic approximation”, Dokl. Phys., 49:6 (2004), 374–377 | DOI | MR

[10] Paimushin V.N., Shalashilin V.I., “On square approximations of the deformation theory and problems of constructing improved versions of geometrical non-linear theory of multylayer construction elements”, J. Appl. Math. and Mech., 69:5 (2005), 861–881 | DOI | Zbl

[11] Paimushin V.N., “Problems of geometric non-linearity and stability in the mechanics of thin shells and rectilinear columns”, J. Appl. Math. and Mech., 71:5 (2007), 772–805 | DOI | MR

[12] Vasilev V.V., Mekhanika konstruktsii iz kompozitsionnykh materialov, Mashinostroenie, M., 1988