@article{IVM_2024_2_a5,
author = {M. I. Muminov and I. N. Bozorov and T. Kh. Rasulov},
title = {On the number of components of the essential spectrum of one $2\times2$ operator matrix},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {85--90},
year = {2024},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_2_a5/}
}
TY - JOUR AU - M. I. Muminov AU - I. N. Bozorov AU - T. Kh. Rasulov TI - On the number of components of the essential spectrum of one $2\times2$ operator matrix JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 85 EP - 90 IS - 2 UR - http://geodesic.mathdoc.fr/item/IVM_2024_2_a5/ LA - ru ID - IVM_2024_2_a5 ER -
%0 Journal Article %A M. I. Muminov %A I. N. Bozorov %A T. Kh. Rasulov %T On the number of components of the essential spectrum of one $2\times2$ operator matrix %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2024 %P 85-90 %N 2 %U http://geodesic.mathdoc.fr/item/IVM_2024_2_a5/ %G ru %F IVM_2024_2_a5
M. I. Muminov; I. N. Bozorov; T. Kh. Rasulov. On the number of components of the essential spectrum of one $2\times2$ operator matrix. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 85-90. http://geodesic.mathdoc.fr/item/IVM_2024_2_a5/
[1] Mogilner A.I., “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and results”, Advances Sov. Math., 5 (1991), 139–194 | MR | Zbl
[2] Fridrikhs K.O., Vozmuscheniya spektra operatorov v gilbertovom prostranstve, Mir, M., 1969
[3] Malishev V.A., Minlos R.A., Linear Infinite-Particle Operators, Translations of Mathematical Monographs, 143, Amer. Math. Soc., Providence, RI, 1995 | DOI | MR
[4] Lifschitz A.E., Magnetohydrodynamics and spectral theory, v. 4, Developments in Electromagnetic Theory and Applications, Kluwer Academic Publishers Group, Dordrecht, 1989 | MR | Zbl
[5] Thaller B., The Dirac equation, Texts and Monographs in Physics, Springer, Berlin, 1992 | MR
[6] Minlos R.A., Spohn H., “The three-body problem in radioactive decay: the case of one atom and at most two photons”, Topics in Statistical and Theoretical Physics, Amer. Math. Soc. Transl. Ser. 2, 177, Providence, RI, 1996, 159–193 | MR | Zbl
[7] Zhukov Yu.V., Minlos R.A., “Spektr i rasseyanie v modeli “spin-bozon” s ne bolee chem tremya fotonami”, Teoret. i matem. fiz., 103:1 (1995), 63–81 | MR | Zbl
[8] Muminov M., Neidhardt H., Rasulov T., “On the spectrum of the lattice spin-boson Hamiltonian for any coupling: $1$D case”, J. Math. Phys., 56 (2015), 053507 | DOI | MR | Zbl
[9] Rasulov T.Kh., “O vetvyakh suschestvennogo spektra reshetchatoi modeli spin-bozona s ne bolee chem dvumya fotonami”, Teoret. i matem. fiz., 186:2 (2016), 293–310 | DOI | MR | Zbl
[10] Rasulov T.Kh., “Uravnenie Faddeeva i mestopolozhenie suschestvennogo spektra modelnogo operatora neskolkikh chastits”, Izv. vuzov. Matem., 2008, no. 12, 59–69 | Zbl
[11] Tretter C., Spectral Theory of Block Operator Matrices and Applications, Imperial College Press, 2008 | MR | Zbl
[12] Bozorov I.N., Khamidov Sh.I., Lakaev S.N., “The number and location of eigenvalues of the two particle discrete Schrödinger operators”, Lobachevskii J. Math., 43:11 (2022), 3079–3090 | DOI | MR
[13] Imomov A.A., Bozorov I.N., Khurramov A.M., “O chisle sobstvennykh znachenii modelnogo operatora na odnomernoi reshetke”, Vestn. Tomsk. gos. un-ta. Matem. i mekhan., 78 (2022), 22–37 | MR | Zbl
[14] Muminov M.I., Khurramov A.M., Bozorov I.N., “Conditions for the existence of bound states of a two-particle Hamiltonian on a three-dimensional lattice”, Nanosistemy: fizika, khimiya, matem., 13:3 (2022), 237–244 | MR
[15] Muminov M.I., Hurramov A.M., Bozorov I.N., “On eigenvalues and virtual levels of a two-particle Hamiltonian on a $d$-dimensional lattice”, Nanosistemy: fizika, khimiya, matem., 14:3 (2023), 295–303
[16] Muminov M.E., Khurramov A.M., “Spektralnye svoistva dvukhchastichnogo gamiltoniana na reshetke”, Teoret. i matem. fiz., 177:3 (2013), 482–496 | DOI
[17] Muminov M.E., Khurramov A.M., “O kratnosti virtualnogo urovnya nizhnego kraya nepreryvnogo spektra odnogo dvukhchastichnogo gamiltoniana na reshetke”, Teoret. i matem. fiz., 180:3 (2014), 329–341 | DOI | Zbl
[18] Bakhronov B.I., Rasulov T.Kh., Rekhman M., “Usloviya suschestvovaniya sobstvennykh znachenii trekhchastichnogo reshetchatogo modelnogo gamiltoniana”, Izv. vuzov. Matem., 2023, no. 7, 3–12
[19] Abdullaev Zh.I., Khalkhuzhaev A.M., Rasulov T.Kh., “Invariantnye podprostranstva i sobstvennye znacheniya trekhchastichnogo diskretnogo operatora Shredingera”, Izv. vuzov. Matem., 2023, no. 9, 3–19
[20] Rasulov T.Kh., Mukhitdinov R.T., “Konechnost diskretnogo spektra modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Izv. vuzov. Matem., 2014, no. 1, 61–70 | Zbl
[21] Muminov M.I., Rasulov T.H., “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77 | MR | Zbl