On the classification of points of the unit circle for subharmonic functions of class $\mathfrak{A}^*$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 81-84 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this article, we consider a class $\mathfrak{A}^*$ consisting of functions, subharmonic in the unit disk and such that their compositions with some families of linear fractional automorphisms of the disk form normal families. We prove a theorem which states that for any function of class $\mathfrak{A}^*$ the set of points of the unit circle can be represented as a union of Fatou points, generalized point Plesner, and a set of zero measure.
Keywords: subharmonic function, limit set, angular limit, class $\mathfrak{A}^*$.
@article{IVM_2024_2_a4,
     author = {S. L. Berberyan},
     title = {On the classification of points of the unit circle for subharmonic functions of class $\mathfrak{A}^*$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {81--84},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_2_a4/}
}
TY  - JOUR
AU  - S. L. Berberyan
TI  - On the classification of points of the unit circle for subharmonic functions of class $\mathfrak{A}^*$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 81
EP  - 84
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_2_a4/
LA  - ru
ID  - IVM_2024_2_a4
ER  - 
%0 Journal Article
%A S. L. Berberyan
%T On the classification of points of the unit circle for subharmonic functions of class $\mathfrak{A}^*$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 81-84
%N 2
%U http://geodesic.mathdoc.fr/item/IVM_2024_2_a4/
%G ru
%F IVM_2024_2_a4
S. L. Berberyan. On the classification of points of the unit circle for subharmonic functions of class $\mathfrak{A}^*$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 81-84. http://geodesic.mathdoc.fr/item/IVM_2024_2_a4/

[1] Privalov I.I., Granichnye svoistva analiticheskikh funktsii, GITTL, M.-L., 1950 | MR

[2] Kollingvud E., Lovater A., Teoriya predelnykh mnozhestv, Mir, M., 1971

[3] Yamashita S., “Boundary behaviour of functions harmonic in the unit ball”, Proc. Japan Acad., 46:6 (1970), 490–493 | MR | Zbl

[4] Nosiro K., Predelnye mnozhestva, Inlit, M., 1963

[5] Gavrilov V.I., “Povedenie vdol khord meromorfnykh funktsii v edinichnom kruge”, DAN SSSR, 216:1 (1974), 21–23 | Zbl

[6] Berberyan S.L., “O granichnykh osobennostyakh normalnykh subgarmonicheskikh funktsii”, Math. Montisnigri, 18–19 (2005–2006), 5–14 | MR | Zbl

[7] Berberyan S.L., “Klassifikatsiya granichnykh osobennostei normalnykh subgarmonicheskikh funktsii i ee primeneniya”, UMN, 62:3 (2007), 207–208 | DOI | MR | Zbl

[8] Berberyan S.L., “Ob uglovykh granichnykh znacheniyakh normalnykh nepreryvnykh funktsii”, Izv. vuzov. Matem., 1986, no. 3, 22–28 | MR | Zbl

[9] Lappan P., “Some results on harmonic normal functions”, Math. Zeitschrift, 90:2 (1965), 155–159 | DOI | MR | Zbl

[10] Rung D.C., “Asymptotic values of normal subharmonic functions”, Math. Zeitschrift, 84:1 (1964), 9–15 | DOI | MR | Zbl

[11] Gavrilov V.I., “Normalnye funktsii i pochti-periodicheskie funktsii”, DAN SSSR, 240:4 (1978), 768–770 | MR | Zbl

[12] Tsuji M., “Littlewood's theorem on subharmonic functions in a unit circle”, Comm. Math. Univ. St. Paul, 5:7 (1956), 3–16 | MR | Zbl

[13] Privalov I.I., “Obobschenie teoremy Fatou”, Matem. sb., 31:2 (1923), 232–235

[14] Bagemihl F., Seidel W., “Sequential and continuous limits of meromorphic functions”, Ann. Acad. Sci. Fenn. Ser. A. I., 280 (1960), 1–17 | MR