Mots-clés : uniform convergence.
@article{IVM_2024_2_a3,
author = {A. Yu. Trynin},
title = {On one method for solving a mixed boundary value problem for a parabolic type equation using operators $\mathbb{AT}_{\lambda,j}$},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {59--80},
year = {2024},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_2_a3/}
}
TY - JOUR
AU - A. Yu. Trynin
TI - On one method for solving a mixed boundary value problem for a parabolic type equation using operators $\mathbb{AT}_{\lambda,j}$
JO - Izvestiâ vysših učebnyh zavedenij. Matematika
PY - 2024
SP - 59
EP - 80
IS - 2
UR - http://geodesic.mathdoc.fr/item/IVM_2024_2_a3/
LA - ru
ID - IVM_2024_2_a3
ER -
%0 Journal Article
%A A. Yu. Trynin
%T On one method for solving a mixed boundary value problem for a parabolic type equation using operators $\mathbb{AT}_{\lambda,j}$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 59-80
%N 2
%U http://geodesic.mathdoc.fr/item/IVM_2024_2_a3/
%G ru
%F IVM_2024_2_a3
A. Yu. Trynin. On one method for solving a mixed boundary value problem for a parabolic type equation using operators $\mathbb{AT}_{\lambda,j}$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 59-80. http://geodesic.mathdoc.fr/item/IVM_2024_2_a3/
[1] Sobolev S.L., Uravneniya matematicheskoi fiziki, Gos. Iz-vo tekhniko-teor. lit., M., 1954 | MR
[2] Vladimirov V.S., Uravneniya matematicheskoi fiziki, Nauka, M., 1988 | MR
[3] Petrovskii I.G., Lektsii ob uravneniyakh s chastnymi proizvodnymi, GIFML, M., 1961 | MR
[4] Lyusternik L.A., Sobolev V.I., Elementy funktsionalnogo analiza, GIFML, M., 1965 | MR
[5] Tikhonov A.N., Samarskii A.A, Uravneniya matematicheskoi fiziki, Nauka, M., 1977 | MR
[6] Makaova R.Kh., “Kraevaya zadacha dlya giperbolicheskogo uravneniya tretego poryadka s vyrozhdeniem poryadka vnutri oblasti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 21:4 (2017), 651–664 | DOI | Zbl
[7] Mamedov I.G., “Trekhmernaya integro-mnogotochechnaya kraevaya zadacha dlya nagruzhennykh volterro-giperbolicheskikh integro-differentsialnykh uravnenii tipa Bianki”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 1(26) (2012), 8–20 | DOI | Zbl
[8] Kozhanov A.I., Pulkina L.S., “O razreshimosti kraevykh zadach s nelokalnym granichnym usloviem integralnogo vida dlya mnogomernykh giperbolicheskikh uravnenii”, Differents. uravneniya, 42:9 (2006), 1166–1179 | MR | Zbl
[9] Abdullaev O.Kh., “Kraevaya zadacha dlya nagruzhennogo uravneniya elliptiko-giperbolicheskogo tipa v dvusvyaznoi oblasti”, Vestn. KRAUNTs. Fiz.-matem. nauki, 2014, no. 1(8), 33–48 | Zbl
[10] Pulkina L.S., “Kraevye zadachi dlya giperbolicheskogo uravneniya s nelokalnymi usloviyami I i II roda”, Izv. vuzov. Matem., 2012, no. 4, 74–83 | MR | Zbl
[11] Tarasenko A.V., “Kraevaya zadacha dlya nagruzhennogo uravneniya smeshannogo parabolo-giperbolicheskogo tipa v pryamougolnoi oblasti”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 5(21) (2010), 263–267 | DOI | Zbl
[12] Balkizov Zh.A., “Pervaya kraevaya zadacha dlya vyrozhdayuschegosya vnutri oblasti giperbolicheskogo uravneniya”, Vladikavk. matem. zhurn., 18:2 (2016), 19–30 | MR | Zbl
[13] Vodakhova V.A., Balkizova A.Kh., “Kraevaya zadacha dlya modelnogo uravneniya smeshannogo parabolo-giperbolicheskogo tipa tretego poryadka”, Vestn. KRAUNTs. Fiz.-matem. nauki, 28:3 (2019), 6–15 | DOI | MR
[14] Makaova R.Kh., “Kraevaya zadacha so smescheniem dlya giperbolicheskogo uravneniya tretego poryadka s proizvodnoi v granichnykh usloviyakh”, Vestn. KRAUNTs. Fiz.-matem. nauki, 37:4 (2021), 38–44 | DOI | MR | Zbl
[15] Andreev A.A., Ogorodnikov E.N., “O korrektnosti nachalnykh kraevykh zadach dlya odnogo giperbolicheskogo uravneniya s vyrozhdeniem poryadka i involyutivnym otkloneniem”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 2000, no. 9, 32–36 | DOI
[16] Leksina S.V., “Vtoraya kraevaya zadacha dlya sistemy giperbolicheskogo tipa vtorogo poryadka pri bolshikh $T$”, Izv. Sarat. un-ta. Nov. ser. Ser. Matem. Mekhan. Informatika, 11:3(2) (2011), 94–99
[17] Zhura N.A., Soldatov A.P., “Kraevaya zadacha dlya giperbolicheskoi sistemy pervogo poryadka v dvumernoi oblasti”, Izv. RAN. Ser. matem., 81:3 (2017), 83–108 | DOI | MR | Zbl
[18] Ashurov R.R., Mukhiddinova A.T., “Nachalno-kraevye zadachi dlya giperbolicheskikh uravnenii s ellipticheskim operatorom proizvolnogo poryadka”, Vestn. KRAUNTs. Fiz.-matem. nauki, 30:1 (2020), 8–19 | DOI | MR | Zbl
[19] Sabitov K.B., “Nachalno-granichnaya zadacha dlya parabolo-giperbolicheskogo uravneniya s nagruzhennymi slagaemymi”, Izv. vuzov. Matem., 2015, no. 6, 31–42 | Zbl
[20] Kozhanov A.I., Dyuzheva A.V., “Vtoraya nachalno-kraevaya zadacha s integralnym smescheniem dlya giperbolicheskikh i parabolicheskikh uravnenii vtorogo poryadka”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-matem. nauki, 25:3 (2021), 423–434 | DOI | Zbl
[21] Olevskii A.M., “Raskhodyaschiesya ryady Fure nepreryvnykh funktsii”, DAN SSSR, 141:1 (1961), 28–31 | Zbl
[22] Olevskii A.M., “Raskhodyaschiesya ryady Fure”, Izv. AN SSSR. Ser. matem., 27:2 (1963), 343–366 | Zbl
[23] Buzdalin V.V., “Trigonometricheskie ryady Fure nepreryvnykh funktsii, raskhodyaschiesya na zadannom mnozhestve”, Matem. sb., 95(137):1(9) (1974), 84–107 | MR | Zbl
[24] Kazaryan K.S., “Raskhodyaschiesya ortogonalnye ryady Fure”, Matem. sb., 182:7 (1991), 985–1008
[25] Khromov A.P., Kornev V.V., “Raskhodyaschiesya ryady v metode Fure dlya volnovogo uravneniya”, Tr. in-ta matem. i mekhan. UrO RAN, 27, no. 4, 2021, 215–238
[26] Lomov I.S., “Postroenie obobschennogo resheniya smeshannoi zadachi dlya telegrafnogo uravneniya: sekventsialnyi i aksiomaticheskii podkhody”, Differents. uravneniya, 58:11 (2022), 1471–1483 | Zbl
[27] Khromov A.P., “Raskhodyaschiesya ryady i obobschennye smeshannye zadachi dlya uravneniya teploprovodnosti i uravneniya Shredingera prosteishego vida”, Sovr. metody teorii funktsii i smezhnye probl., Mater. Mezhd. konf. “Voronezhskaya zimnyaya matematicheskaya shkola”, 2023, 353–357
[28] Glotov V.Yu., Goloviznin V.M., Chetverushkin B.N., “Balansno-kharakteristicheskie raznostnye skhemy dlya uravnenii parabolicheskogo tipa”, Matem. modelirovanie, 32:4 (2020), 94–106 | DOI | MR | Zbl
[29] Samarskii A.A., Teoriya raznostnykh skhem, Nauka, M., 1989
[30] Sushkov A.S., “O skhodimosti raznostnoi skhemy, approksimiruyuschei odnu kraevuyu zadachu giperbolicheskogo tipa”, Chelyab. fiz.-matem. zhurn., 4:3 (2019), 333–344 | MR | Zbl
[31] Kholodov A.S., Kholodov Ya.A., “O kriteriyakh monotonnosti raznostnykh skhem dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 46:9 (2006), 1638–1667 | MR
[32] Komurdzhishvili O.P., “Raznostnye skhemy dlya resheniya mnogomernykh uravnenii i sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 47:6 (2007), 980–987 | MR | Zbl
[33] Kholodov A.S., “O postroenii raznostnykh skhem s polozhitelnoi approksimatsiei dlya uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 18:6 (1978), 1476–1492 | MR | Zbl
[34] Kholodov Ya.A., Kholodov A.S., Tsybulin I.V., “Postroenie monotonnykh raznostnykh skhem dlya sistem uravnenii giperbolicheskogo tipa”, Zh. vychisl. matem. i matem. fiz., 58:8 (2018), 30–49 | DOI | MR
[35] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, LGU, M., 1950 | MR
[36] Antosik P., Mikusinski J., Sikorski R., Theory of Distributions. The Sequential Approach, Elsevier Scientific, Amsterdam, 1973 | MR | Zbl
[37] Levitan B.M., Sargsyan I.S., Operatory Shturma–Liuvillya i Diraka, Nauka, M., 1988 | MR
[38] Trynin A.Yu., “Ob asimptotike reshenii i uzlovykh tochek differentsialnykh vyrazhenii Shturma-Liuvillya”, Sib. matem. zhurn., 51:3 (2010), 662–675 | MR | Zbl
[39] Trynin A.Yu., “Obobschenie teoremy otschetov Uittekera–Kotelnikova–Shennona dlya nepreryvnykh funktsii na otrezke”, Matem. sb., 200:11 (2009), 61-108 | DOI | MR | Zbl
[40] Trynin A.Yu., “Differentsialnye svoistva nulei sobstvennykh funktsii zadachi Shturma–Liuvillya”, Ufimsk. matem. zhurn., 3:4 (2011), 133-143 | MR | Zbl
[41] Trynin A.Yu., “Ob odnoi obratnoi uzlovoi zadache dlya operatora Shturma–Liuvillya”, Ufimsk. matem. zhurn., 5:4 (2013), 116–129 | MR
[42] Natanson I.P., Teoriya funktsii veschestvennoi peremennoi, Nauka, M., 1974 | MR