@article{IVM_2024_2_a2,
author = {R. Kumar and S. Kaushal and Pragati},
title = {Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {37--58},
year = {2024},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_2_a2/}
}
TY - JOUR AU - R. Kumar AU - S. Kaushal AU - Pragati TI - Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 37 EP - 58 IS - 2 UR - http://geodesic.mathdoc.fr/item/IVM_2024_2_a2/ LA - ru ID - IVM_2024_2_a2 ER -
%0 Journal Article %A R. Kumar %A S. Kaushal %A Pragati %T Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2024 %P 37-58 %N 2 %U http://geodesic.mathdoc.fr/item/IVM_2024_2_a2/ %G ru %F IVM_2024_2_a2
R. Kumar; S. Kaushal; Pragati. Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 37-58. http://geodesic.mathdoc.fr/item/IVM_2024_2_a2/
[1] Mindlin R.D., Tiersten H.F., “Effects of couple-stresses in linear elasticity”, Arch.Ration. Mech. Anal., 11:1 (1962), 415–448 | DOI | MR | Zbl
[2] Toupin R.A., “Perfectly elastic materials with couple-stresses”, Arch. Ration. Mech. Anal., 11 (1962), 385–414 | DOI | MR | Zbl
[3] Koiter W.T., “Couple Stresses in the Theory of Elasticity I and II”, Proc. R. Ser. B, Koninklijke Nederlandse Acad. Wetenschappen, 67 (1964), 17–44 | MR
[4] Yang F., Chong A.C.M., Lam D.C.C., Tong P., “Couple stress based strain gradient theory for elasticity”, Int. J. Solids Struct., 39:10 (2002), 2731–2743 | DOI | Zbl
[5] Nowacki W., “Dynamical problems of thermodiffusion in solids – I”, Bull. Polish Acad. Sci. Ser., Sci. and Technology, 22 (1974), 55–64 | MR
[6] Nowacki W., “Dynamical problems of thermodiffusion in solids – II”, Bull. Polish Acad. Sci. Ser., Sci. and Technology, 22 (1974), 205–211 | MR | Zbl
[7] Nowacki W., “Dynamical problems of thermodiffusion in solids – III”, Bull. Polish Acad. Sci. Ser., Sci. and Technology, 22 (1974), 257–266 | MR
[8] Nowacki W., “Dynamical problems of diffusion in solids”, Engin. Fracture Mech., 8:1 (1976), 261–266 | DOI | MR
[9] Sherief H.H., Hamza F.A., Saleh H.A., “The theory of generalized thermoelastic diffusion”, Int. J. Engin. Sci., 42:5–6 (2004), 591–608 | DOI | MR | Zbl
[10] Kumar R., Kansal T., “Dynamic problem of generalized thermoelastic diffusive medium”, J. Mech. Sci. and Techn., 24:1 (2010), 337–342 | DOI
[11] Lord H., Shulman Y., “A generalized dynamical theory of thermoelasticity”, J. Mech. Phys. Solids, 15:5 (1967), 299–309 | DOI | Zbl
[12] Aouadi M., “A theory of thermoelastic diffusion materials with voids”, ZAMP, 61:2 (2010), 357–379 | MR | Zbl
[13] Goodman M.A., Cowin S.C., “A continuum theory for granular materials”, Arch. Ration. Mech. Anal., 44 (1972), 249–266 | DOI | MR | Zbl
[14] Nunziato J.W., Cowin S.C., “A nonlinear theory of elastic materials with voids”, Arch. Ration. Mech. Anal., 72 (1979), 175–201 | DOI | MR | Zbl
[15] Cowin S.C., Nunziato J.W., “Linear elastic materials with voids”, J. Elast., 13 (1983), 125–147 | DOI | Zbl
[16] Puri P., Cowin S.C., “Plane waves in linear elastic material with voids”, J. Elasticity, 15:2 (1985), 167–183 | DOI | Zbl
[17] Iesan D., “A theory of thermoelastic materials with voids”, Acta Mech., 60:1–2 (1986), 67–89 | DOI
[18] Eringen A.C., Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002 | MR | Zbl
[19] Tzou D.Y., “A Unified Field Approach for Heat Conduction from Macro- to Micro-Scales”, J. Heat Transf., 117:1 (1995), 8–16 | DOI | MR
[20] Cao B.-Y., Guo Z.-Y., “Equation of motion a phonon gas and non-Fourier heat conduction”, J. Appl. Phys., 102:5 (2007), 053503, 5 pp. | DOI
[21] Tzou D.Y., Guo Z.-Y., “Nonlocal behavior in thermal lagging”, Int. J. Therm. Sci., 49:7 (2010), 1133–1137 | DOI
[22] Sharma S., Sharma K., Bhargava R.R., “Effect of viscosity on wave propagation in anisotropic thermoelastic with Green–Naghdi theory type-II and type-III”, Mat. Phys. Mech., 16:2 (2013), 144–158
[23] Iesan D., Nappa L., “Thermal Stresses in Plane Strain of Porous Elastic Solids”, Meccanica, 39:2 (2004), 125–138 | DOI | MR | Zbl
[24] Iesan D., “Nonlinear Plane Strain of Elastic Materials with Voids”, Math. Mech. Solid, 11:4 (2006), 361–384 | DOI | MR | Zbl
[25] Sharma S., Sharma K., Bhargava R.R., “Wave motion and representation of fundamental solution in electro-microstretch viscoelastic solids”, Mat. Phys. Mech., 17:2 (2013), 93–110 | MR
[26] Sharma S., Sharma K., Bhargava R.R., “Plane waves and fundamental solution in an electro-microstretch elastic solids”, Afr. Math., 25:2 (2014), 483–497 | DOI | MR | Zbl
[27] Sharma K., Kumar P., “Propagation of Plane Waves and Fundamental Solution in Thermoviscoelastic Medium with Voids”, J. Therm. Stresses, 36:2 (2013), 94–111 | DOI
[28] Kumar R., Devi Shaloo, Sharma V., “Plane waves and fundamental solution in a modified couple stress generalized thermoelastic with mass diffusion”, Mat. Phys. Mech., 24:1 (2015), 72–85 | MR
[29] Kumar R., Vohra R., Gorla M.G., “Some consideration of fundamental solution in micropolar thermoelastic materials with double porosity”, Archives of Mech., 68 (2016), 263–284 | MR | Zbl
[30] Biswas S., “Fundamental solution of steady oscillations in thermoelastic medium with voids”, Waves in Random and Complex Media, 30:4 (2020), 759–775 | DOI | MR | Zbl
[31] Svanadze M., “The fundamental solution and uniqueness theorem in the theory of viscoelasticity for materials with double porosity”, Math. int., 172 (2018), 276–292 ; 633–648 | MR | Zbl
[32] Kansal T., “Fundamental solution in the theory of thermoelastic diffusion materials with double porosity”, J. Solid Mech., 11:2 (2019), 281–296 | MR
[33] Kumar R., Ghangas S., Vashisth A., “Fundamental solution in the theory of thermoelastic diffusion materials with double porosity”, J. Solid Mech., 11:2 (2021), 281–296
[34] Kumar R., Batra D., “Plane wave and fundamental solution in steady oscillation swelling porous thermoelastic medium”, Waves in Random and Complex Media, 2022 | MR
[35] Kumar R., “Response of Thermoelastic Beam due to Thermal Source in Modified Couple Stress Theory”, Computational Methods Sci. and Technology, 22:2 (2016), 95–101 | DOI | MR
[36] Hörmander L., Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963 | MR | Zbl
[37] Sherief H.H., Saleh H., “A half space problem in the theory of generalised thermoelastic diffusion”, Int. J. Solids Struct., 42 (2005), 4484–4493 | DOI | MR | Zbl