Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 37-58 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present study, we explore a new mathematical formulation involving modified couple stress thermoelastic diffusion (MCTD) with nonlocal, voids and phase lags. The governing equations are expressed in dimensionless form for the further investigation. The desired equations are expressed in terms of elementary functions by assuming time harmonic variation of the field variables (displacement, temperature field, chemical potential and volume fraction field). The fundamental solutions are constructed for the obtained system of equations for steady oscillation, and some basic features of the solutions are established. Also, plane wave vibrations has been examined for two dimensional cases. The characteristic equation yields the attributes of waves like phase velocity, attenuation coefficients, specific loss and penetration depth which are computed numerically and presented in form of distinct graphs. Some unique cases are also deduced. The results provide the motivation for the researcher to investigate thermally conducted modified couple stress elastic material under nonlocal, porosity and phase lags impacts as a new class of applicable materials.
Keywords: modified couple stress, thermoelastic diffusion, non-local, void, phase lag, plane wave, fundamental solution, steady oscillation.
@article{IVM_2024_2_a2,
     author = {R. Kumar and S. Kaushal and Pragati},
     title = {Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {37--58},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_2_a2/}
}
TY  - JOUR
AU  - R. Kumar
AU  - S. Kaushal
AU  - Pragati
TI  - Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 37
EP  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_2_a2/
LA  - ru
ID  - IVM_2024_2_a2
ER  - 
%0 Journal Article
%A R. Kumar
%A S. Kaushal
%A Pragati
%T Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 37-58
%N 2
%U http://geodesic.mathdoc.fr/item/IVM_2024_2_a2/
%G ru
%F IVM_2024_2_a2
R. Kumar; S. Kaushal; Pragati. Wave analysis and representation of fundamental solution in modified couple stress thermoelastic diffusion with voids, nonlocal and phase lags. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 37-58. http://geodesic.mathdoc.fr/item/IVM_2024_2_a2/

[1] Mindlin R.D., Tiersten H.F., “Effects of couple-stresses in linear elasticity”, Arch.Ration. Mech. Anal., 11:1 (1962), 415–448 | DOI | MR | Zbl

[2] Toupin R.A., “Perfectly elastic materials with couple-stresses”, Arch. Ration. Mech. Anal., 11 (1962), 385–414 | DOI | MR | Zbl

[3] Koiter W.T., “Couple Stresses in the Theory of Elasticity I and II”, Proc. R. Ser. B, Koninklijke Nederlandse Acad. Wetenschappen, 67 (1964), 17–44 | MR

[4] Yang F., Chong A.C.M., Lam D.C.C., Tong P., “Couple stress based strain gradient theory for elasticity”, Int. J. Solids Struct., 39:10 (2002), 2731–2743 | DOI | Zbl

[5] Nowacki W., “Dynamical problems of thermodiffusion in solids – I”, Bull. Polish Acad. Sci. Ser., Sci. and Technology, 22 (1974), 55–64 | MR

[6] Nowacki W., “Dynamical problems of thermodiffusion in solids – II”, Bull. Polish Acad. Sci. Ser., Sci. and Technology, 22 (1974), 205–211 | MR | Zbl

[7] Nowacki W., “Dynamical problems of thermodiffusion in solids – III”, Bull. Polish Acad. Sci. Ser., Sci. and Technology, 22 (1974), 257–266 | MR

[8] Nowacki W., “Dynamical problems of diffusion in solids”, Engin. Fracture Mech., 8:1 (1976), 261–266 | DOI | MR

[9] Sherief H.H., Hamza F.A., Saleh H.A., “The theory of generalized thermoelastic diffusion”, Int. J. Engin. Sci., 42:5–6 (2004), 591–608 | DOI | MR | Zbl

[10] Kumar R., Kansal T., “Dynamic problem of generalized thermoelastic diffusive medium”, J. Mech. Sci. and Techn., 24:1 (2010), 337–342 | DOI

[11] Lord H., Shulman Y., “A generalized dynamical theory of thermoelasticity”, J. Mech. Phys. Solids, 15:5 (1967), 299–309 | DOI | Zbl

[12] Aouadi M., “A theory of thermoelastic diffusion materials with voids”, ZAMP, 61:2 (2010), 357–379 | MR | Zbl

[13] Goodman M.A., Cowin S.C., “A continuum theory for granular materials”, Arch. Ration. Mech. Anal., 44 (1972), 249–266 | DOI | MR | Zbl

[14] Nunziato J.W., Cowin S.C., “A nonlinear theory of elastic materials with voids”, Arch. Ration. Mech. Anal., 72 (1979), 175–201 | DOI | MR | Zbl

[15] Cowin S.C., Nunziato J.W., “Linear elastic materials with voids”, J. Elast., 13 (1983), 125–147 | DOI | Zbl

[16] Puri P., Cowin S.C., “Plane waves in linear elastic material with voids”, J. Elasticity, 15:2 (1985), 167–183 | DOI | Zbl

[17] Iesan D., “A theory of thermoelastic materials with voids”, Acta Mech., 60:1–2 (1986), 67–89 | DOI

[18] Eringen A.C., Nonlocal Continuum Field Theories, Springer-Verlag, New York, 2002 | MR | Zbl

[19] Tzou D.Y., “A Unified Field Approach for Heat Conduction from Macro- to Micro-Scales”, J. Heat Transf., 117:1 (1995), 8–16 | DOI | MR

[20] Cao B.-Y., Guo Z.-Y., “Equation of motion a phonon gas and non-Fourier heat conduction”, J. Appl. Phys., 102:5 (2007), 053503, 5 pp. | DOI

[21] Tzou D.Y., Guo Z.-Y., “Nonlocal behavior in thermal lagging”, Int. J. Therm. Sci., 49:7 (2010), 1133–1137 | DOI

[22] Sharma S., Sharma K., Bhargava R.R., “Effect of viscosity on wave propagation in anisotropic thermoelastic with Green–Naghdi theory type-II and type-III”, Mat. Phys. Mech., 16:2 (2013), 144–158

[23] Iesan D., Nappa L., “Thermal Stresses in Plane Strain of Porous Elastic Solids”, Meccanica, 39:2 (2004), 125–138 | DOI | MR | Zbl

[24] Iesan D., “Nonlinear Plane Strain of Elastic Materials with Voids”, Math. Mech. Solid, 11:4 (2006), 361–384 | DOI | MR | Zbl

[25] Sharma S., Sharma K., Bhargava R.R., “Wave motion and representation of fundamental solution in electro-microstretch viscoelastic solids”, Mat. Phys. Mech., 17:2 (2013), 93–110 | MR

[26] Sharma S., Sharma K., Bhargava R.R., “Plane waves and fundamental solution in an electro-microstretch elastic solids”, Afr. Math., 25:2 (2014), 483–497 | DOI | MR | Zbl

[27] Sharma K., Kumar P., “Propagation of Plane Waves and Fundamental Solution in Thermoviscoelastic Medium with Voids”, J. Therm. Stresses, 36:2 (2013), 94–111 | DOI

[28] Kumar R., Devi Shaloo, Sharma V., “Plane waves and fundamental solution in a modified couple stress generalized thermoelastic with mass diffusion”, Mat. Phys. Mech., 24:1 (2015), 72–85 | MR

[29] Kumar R., Vohra R., Gorla M.G., “Some consideration of fundamental solution in micropolar thermoelastic materials with double porosity”, Archives of Mech., 68 (2016), 263–284 | MR | Zbl

[30] Biswas S., “Fundamental solution of steady oscillations in thermoelastic medium with voids”, Waves in Random and Complex Media, 30:4 (2020), 759–775 | DOI | MR | Zbl

[31] Svanadze M., “The fundamental solution and uniqueness theorem in the theory of viscoelasticity for materials with double porosity”, Math. int., 172 (2018), 276–292 ; 633–648 | MR | Zbl

[32] Kansal T., “Fundamental solution in the theory of thermoelastic diffusion materials with double porosity”, J. Solid Mech., 11:2 (2019), 281–296 | MR

[33] Kumar R., Ghangas S., Vashisth A., “Fundamental solution in the theory of thermoelastic diffusion materials with double porosity”, J. Solid Mech., 11:2 (2021), 281–296

[34] Kumar R., Batra D., “Plane wave and fundamental solution in steady oscillation swelling porous thermoelastic medium”, Waves in Random and Complex Media, 2022 | MR

[35] Kumar R., “Response of Thermoelastic Beam due to Thermal Source in Modified Couple Stress Theory”, Computational Methods Sci. and Technology, 22:2 (2016), 95–101 | DOI | MR

[36] Hörmander L., Linear Partial Differential Operators, Springer-Verlag, Berlin, 1963 | MR | Zbl

[37] Sherief H.H., Saleh H., “A half space problem in the theory of generalised thermoelastic diffusion”, Int. J. Solids Struct., 42 (2005), 4484–4493 | DOI | MR | Zbl