Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 3-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In order to solve a parabolic variational inequality with a nonlocal spatial operator and a one-sided constraint on the solution, a numerical method based on the penalty method, finite elements, and the implicit Euler scheme is proposed and studied. Optimal estimates for the accuracy of the approximate solution in the energy norm are obtained.
Keywords: finite element method, penalty method, parabolic variational inequality, accuracy estimate.
Mots-clés : implicit scheme
@article{IVM_2024_2_a0,
     author = {O. V. Glazyrina and R. Z. Dautov and D. A. Gubaidullina},
     title = {Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--21},
     year = {2024},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_2_a0/}
}
TY  - JOUR
AU  - O. V. Glazyrina
AU  - R. Z. Dautov
AU  - D. A. Gubaidullina
TI  - Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 3
EP  - 21
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_2_a0/
LA  - ru
ID  - IVM_2024_2_a0
ER  - 
%0 Journal Article
%A O. V. Glazyrina
%A R. Z. Dautov
%A D. A. Gubaidullina
%T Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 3-21
%N 2
%U http://geodesic.mathdoc.fr/item/IVM_2024_2_a0/
%G ru
%F IVM_2024_2_a0
O. V. Glazyrina; R. Z. Dautov; D. A. Gubaidullina. Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 3-21. http://geodesic.mathdoc.fr/item/IVM_2024_2_a0/

[1] Chipot M., Rodrigues J.-F., “On a class of nonlocal nonlinear elliptic problems”, ESAIM: Math. Model. and Numer. Anal., 26:3 (1992), 447–467 | DOI | MR | Zbl

[2] Chipot M., Lovat B., “On the Asymptotic Behaviour of Some Nonlocal Problems”, Positivity, 3:1 (1999), 65–81 | DOI | MR | Zbl

[3] Chipot M., Elements of Nonlinear Analysis, Birkhäuser Advanced Texts, Berlin, 2000 | MR | Zbl

[4] Chang N.-H., Chipot M., “Nonlinear nonlocal evolution problems”, Rev. R. Acad. Cien. Exact. Ser. A. Mat., 97:3 (2003), 423–445 | MR | Zbl

[5] Chipot M., Valente V., Caffarelli G.V., “Remarks on a nonlocal problem involving the Dirichlet energy”, Rendiconti del Seminario Matem. della Univ. di Padova, 110 (2003), 199–220 | MR | Zbl

[6] Pavlova M.F., “On the solvability of nonlocal nonstationary problems with double degeneration”, Differ. Equat., 47:8 (2011), 1161–1175 | DOI | MR | Zbl

[7] Glazyrina O.V., Pavlova M.F., “O edinstvennosti resheniya odnoi nelokalnoi nelineinoi zadachi s silno monotonnym po gradientu prostranstvennym operatorom”, Izv. vuzov. Matem., 2012, no. 3, 92–95 | Zbl

[8] Glazyrina O.V., Pavlova M.F., “On the solvability of an evolution variational inequality with a nonlocal space operator”, Differ. Equat., 50:7 (2014), 873–887 | DOI | MR | Zbl

[9] Chaudhary S., Srivastava V., Kumar S., Srinivasan B., “Finite element approximation of nonlocal parabolic problem”, Numer. Methods for Partial Differ. Equat., 33:3 (2016), 786–813 | DOI | MR

[10] Glazyrina O.V., Pavlova M.F., “Study of the convergence of the finite-element method for parabolic equations with a nonlinear nonlocal spatial operator”, Differ. Equat., 51:7 (2015), 872–885 | DOI | MR | Zbl

[11] Glazyrina O.V., Pavlova M.F., “O skhodimosti yavnoi raznostnoi skhemy dlya evolyutsionnogo variatsionnogo neravenstva s nelokalnym prostranstvennym operatorom”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 157, no. 4, 2015, 5–23

[12] Dautov R.Z., Mikheeva A.I., “Exact penalty operators and regularization of parabolic variational inequalities with in obstacle inside a domain”, Differ. Equat., 44:1 (2008), 77–84 | DOI | MR | Zbl

[13] Savaré G., “Weak Solutions and Maximal Regularity for Abstract Evolution Inequalities”, Adv. Math. Sci. Appl., 1996, no. 6, 377–418 | MR | Zbl

[14] Savaré G., Nochetto R., Verdi C., “A Posteriori Error Estimates for Variable Time-Step Discretizations of Nonlinear Evolution Equations”, Comm. Pure Appl. Math., 53 (2000), 525–589 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[15] Dautov R.Z., Mikheeva A.I., “Implicit Euler scheme for an abstract evolution inequality”, Differ. Equat., 47:8 (2011), 1130–1138 | DOI | MR | Zbl

[16] Dautray R., Lions J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, v. 5, Springer-Verlag, Berlin, 1992 | MR | Zbl

[17] Evans L.C., Partial Differential Equations, AMS, Providence, RI, 1998 | MR | Zbl

[18] Tabata M., Uchiumi S., “A genuinely stable Lagrange–Galerkin scheme for convection-diffusion problems”, Japan J. Indust. Appl. Math., 33:1 (2016), 121–143 | DOI | MR | Zbl

[19] Pavlova M.F., Glazyrina O.V., “Teorema edinstvennosti resheniya evolyutsionnogo variatsionnogo neravenstva s nelokalnym prostranstvennym operatorom”, Mater. X Mezhdunar. konf. Setochnye metody dlya kraevykh zadach i prilozheniya, Kazan. fed. un-t, Kazan, 2014, 205–208

[20] Dautov R.Z., Lapin A.V., “Approximations of Evolutionary Inequality with Lipschitz-continuous Functional and Minimally Regular Input Data”, Lobachevskii J. Math., 40:4 (2019), 425–438 | DOI | MR | Zbl

[21] Bramble J.H., Pasciak J.E., and Steinbach O., “On the stability of the $L^2$ projection in $H^1(\Omega)$”, Math. Comp., 71:237 (2002), 147–156 | DOI | MR | Zbl

[22] Bank R.E. and Yserentant H., “On the $H^1$-stability of the $L_2$-projection onto finite element spaces”, Numer. Math., 126 (2014), 361–381 | DOI | MR | Zbl