Mots-clés : implicit scheme
@article{IVM_2024_2_a0,
author = {O. V. Glazyrina and R. Z. Dautov and D. A. Gubaidullina},
title = {Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--21},
year = {2024},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_2_a0/}
}
TY - JOUR AU - O. V. Glazyrina AU - R. Z. Dautov AU - D. A. Gubaidullina TI - Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 3 EP - 21 IS - 2 UR - http://geodesic.mathdoc.fr/item/IVM_2024_2_a0/ LA - ru ID - IVM_2024_2_a0 ER -
%0 Journal Article %A O. V. Glazyrina %A R. Z. Dautov %A D. A. Gubaidullina %T Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2024 %P 3-21 %N 2 %U http://geodesic.mathdoc.fr/item/IVM_2024_2_a0/ %G ru %F IVM_2024_2_a0
O. V. Glazyrina; R. Z. Dautov; D. A. Gubaidullina. Accuracy of an implicit scheme for the finite element method with a penalty for a nonlocal parabolic obstacle problem. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 2 (2024), pp. 3-21. http://geodesic.mathdoc.fr/item/IVM_2024_2_a0/
[1] Chipot M., Rodrigues J.-F., “On a class of nonlocal nonlinear elliptic problems”, ESAIM: Math. Model. and Numer. Anal., 26:3 (1992), 447–467 | DOI | MR | Zbl
[2] Chipot M., Lovat B., “On the Asymptotic Behaviour of Some Nonlocal Problems”, Positivity, 3:1 (1999), 65–81 | DOI | MR | Zbl
[3] Chipot M., Elements of Nonlinear Analysis, Birkhäuser Advanced Texts, Berlin, 2000 | MR | Zbl
[4] Chang N.-H., Chipot M., “Nonlinear nonlocal evolution problems”, Rev. R. Acad. Cien. Exact. Ser. A. Mat., 97:3 (2003), 423–445 | MR | Zbl
[5] Chipot M., Valente V., Caffarelli G.V., “Remarks on a nonlocal problem involving the Dirichlet energy”, Rendiconti del Seminario Matem. della Univ. di Padova, 110 (2003), 199–220 | MR | Zbl
[6] Pavlova M.F., “On the solvability of nonlocal nonstationary problems with double degeneration”, Differ. Equat., 47:8 (2011), 1161–1175 | DOI | MR | Zbl
[7] Glazyrina O.V., Pavlova M.F., “O edinstvennosti resheniya odnoi nelokalnoi nelineinoi zadachi s silno monotonnym po gradientu prostranstvennym operatorom”, Izv. vuzov. Matem., 2012, no. 3, 92–95 | Zbl
[8] Glazyrina O.V., Pavlova M.F., “On the solvability of an evolution variational inequality with a nonlocal space operator”, Differ. Equat., 50:7 (2014), 873–887 | DOI | MR | Zbl
[9] Chaudhary S., Srivastava V., Kumar S., Srinivasan B., “Finite element approximation of nonlocal parabolic problem”, Numer. Methods for Partial Differ. Equat., 33:3 (2016), 786–813 | DOI | MR
[10] Glazyrina O.V., Pavlova M.F., “Study of the convergence of the finite-element method for parabolic equations with a nonlinear nonlocal spatial operator”, Differ. Equat., 51:7 (2015), 872–885 | DOI | MR | Zbl
[11] Glazyrina O.V., Pavlova M.F., “O skhodimosti yavnoi raznostnoi skhemy dlya evolyutsionnogo variatsionnogo neravenstva s nelokalnym prostranstvennym operatorom”, Uchen. zap. Kazan. un-ta. Ser. fiz.-matem. nauki, 157, no. 4, 2015, 5–23
[12] Dautov R.Z., Mikheeva A.I., “Exact penalty operators and regularization of parabolic variational inequalities with in obstacle inside a domain”, Differ. Equat., 44:1 (2008), 77–84 | DOI | MR | Zbl
[13] Savaré G., “Weak Solutions and Maximal Regularity for Abstract Evolution Inequalities”, Adv. Math. Sci. Appl., 1996, no. 6, 377–418 | MR | Zbl
[14] Savaré G., Nochetto R., Verdi C., “A Posteriori Error Estimates for Variable Time-Step Discretizations of Nonlinear Evolution Equations”, Comm. Pure Appl. Math., 53 (2000), 525–589 | 3.0.CO;2-M class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl
[15] Dautov R.Z., Mikheeva A.I., “Implicit Euler scheme for an abstract evolution inequality”, Differ. Equat., 47:8 (2011), 1130–1138 | DOI | MR | Zbl
[16] Dautray R., Lions J.-L., Mathematical Analysis and Numerical Methods for Science and Technology, v. 5, Springer-Verlag, Berlin, 1992 | MR | Zbl
[17] Evans L.C., Partial Differential Equations, AMS, Providence, RI, 1998 | MR | Zbl
[18] Tabata M., Uchiumi S., “A genuinely stable Lagrange–Galerkin scheme for convection-diffusion problems”, Japan J. Indust. Appl. Math., 33:1 (2016), 121–143 | DOI | MR | Zbl
[19] Pavlova M.F., Glazyrina O.V., “Teorema edinstvennosti resheniya evolyutsionnogo variatsionnogo neravenstva s nelokalnym prostranstvennym operatorom”, Mater. X Mezhdunar. konf. Setochnye metody dlya kraevykh zadach i prilozheniya, Kazan. fed. un-t, Kazan, 2014, 205–208
[20] Dautov R.Z., Lapin A.V., “Approximations of Evolutionary Inequality with Lipschitz-continuous Functional and Minimally Regular Input Data”, Lobachevskii J. Math., 40:4 (2019), 425–438 | DOI | MR | Zbl
[21] Bramble J.H., Pasciak J.E., and Steinbach O., “On the stability of the $L^2$ projection in $H^1(\Omega)$”, Math. Comp., 71:237 (2002), 147–156 | DOI | MR | Zbl
[22] Bank R.E. and Yserentant H., “On the $H^1$-stability of the $L_2$-projection onto finite element spaces”, Numer. Math., 126 (2014), 361–381 | DOI | MR | Zbl