On the problem of solvability of nonlinear boundary value problems for shallow isotropic shells of Timoshenko type in isometric coordinates
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2024), pp. 50-68 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The solvability of a boundary value problem for a system, which describes the equilibrium state of elastic shallow inhomogeneous isotropic shells with loose edges referred to isometric coordinates in the Timoshenko shear model and consists of five non-linear second-order partial differential equations under given non-linear boundary conditions, is studied. The boundary value problem is reduced to a nonlinear operator equation for generalized displacements in Sobolev space, the solvability of this equation is established with the help of the contraction mapping principle.
Keywords: shallow isotropic inhomogeneous shell of Timoshenko type, isometric coordinates, nonlinear boundary value problem, generalized solution, integral representation, holomorphic function, operator equation, existence theorem.
@article{IVM_2024_1_a3,
     author = {S. N. Timergaliev},
     title = {On the problem of solvability of nonlinear boundary value problems for shallow isotropic shells of {Timoshenko} type in isometric coordinates},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {50--68},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_1_a3/}
}
TY  - JOUR
AU  - S. N. Timergaliev
TI  - On the problem of solvability of nonlinear boundary value problems for shallow isotropic shells of Timoshenko type in isometric coordinates
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 50
EP  - 68
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_1_a3/
LA  - ru
ID  - IVM_2024_1_a3
ER  - 
%0 Journal Article
%A S. N. Timergaliev
%T On the problem of solvability of nonlinear boundary value problems for shallow isotropic shells of Timoshenko type in isometric coordinates
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 50-68
%N 1
%U http://geodesic.mathdoc.fr/item/IVM_2024_1_a3/
%G ru
%F IVM_2024_1_a3
S. N. Timergaliev. On the problem of solvability of nonlinear boundary value problems for shallow isotropic shells of Timoshenko type in isometric coordinates. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2024), pp. 50-68. http://geodesic.mathdoc.fr/item/IVM_2024_1_a3/

[1] Vorovich I.I., Matematicheskie problemy nelineinoi teorii pologikh obolochek, Nauka, M., 1989 | MR

[2] Morozov N.F., Izbrannye dvumernye zadachi teorii uprugosti, Izd-vo LGU, L., 1978

[3] Karchevskii M.M., “Issledovanie razreshimosti nelineinoi zadachi o ravnovesii pologoi nezakreplennoi obolochki”, Uchen. zap. Kazansk. un-ta. Ser. fiz.-mat. nauki, 155, no. 3, 2013, 105–110 | MR

[4] Paimushin V.N., Kholmogorov S.A., Badriev I.B., “Consistent equations of nonlinear multilayer shells theory in the quadratic approximation”, Lobachevskii J. Math., 40:3 (2019), 349–363 | DOI | MR | Zbl

[5] Timergaliev S.N., Teoremy suschestvovaniya v nelineinoi teorii tonkikh uprugikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 2011

[6] Timergaliev S.N., “K voprosu o suschestvovanii reshenii nelineinoi kraevoi zadachi dlya sistemy differentsialnykh uravnenii s chastnymi proizvodnymi teorii pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Differents. uravneniya, 51:3 (2015), 373–386 | DOI | MR | Zbl

[7] Timergaliev S.N., “Metod integralnykh uravnenii v nelineinykh kraevykh zadachakh dlya pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2017, no. 4, 59–75 | MR | Zbl

[8] Timergaliev S.N., “K probleme razreshimosti nelineinykh zadach ravnovesiya pologikh obolochek tipa Timoshenko”, Prikl. matem. i mekhan., 82:1 (2018), 98–113

[9] Timergaliev S.N., “Method of Integral Equations for Studying the Solvability of Boundary Value Problems for the System of Nonlinear Differential Equations of the Theory of Timoshenko Type Shallow Inhomogeneous Shells”, Diff. Equat., 55:2 (2019), 243–259 | DOI | MR | Zbl

[10] Timergaliev S.N., “O suschestvovanii reshenii nelineinykh zadach ravnovesiya pologikh neodnorodnykh anizotropnykh obolochek tipa Timoshenko”, Izv. vuzov. Matem., 2019, no. 8, 45–61 | Zbl

[11] Timergaliev S.N., “K probleme razreshimosti nelineinykh kraevykh zadach dlya proizvolnykh izotropnykh pologikh obolochek tipa Timoshenko so svobodnymi krayami”, Izv. vuzov. Matem., 2021, no. 4, 90–107 | MR | Zbl

[12] Timergaliev S.N., “O razreshimosti nelineinykh kraevykh zadach dlya sistemy differentsialnykh uravnenii ravnovesiya pologikh anizotropnykh obolochek tipa Timoshenko s nezakreplennymi krayami”, Differents. uravneniya, 57:4 (2021), 507–525 | DOI | MR | Zbl

[13] Galimov K.Z., Osnovy nelineinoi teorii tonkikh obolochek, Izd-vo Kazansk. un-ta, Kazan, 1975

[14] Vekua I.N., Obobschennye analiticheskie funktsii, Nauka, M., 1988

[15] Muskhelishvili N.I., Singulyarnye integralnye uravneniya. Granichnye zadachi teorii funktsii i nekotorye ikh prilozheniya k matematicheskoi fizike, Nauka, M., 1962 | MR

[16] Presdorf Z., Nekotorye klassy singulyarnykh uravnenii, Mir, M., 1979

[17] Gakhov F.D., Kraevye zadachi, 2-e izd., Fizmatgiz, M., 1963

[18] Krasnoselskii M.A., Topologicheskie metody v teorii nelineinykh integralnykh uravnenii, Gostekhizdat, M., 1956 | MR