Asymptotic behavior of solutions of the inhomogeneous Schrödinger equation on noncompact Riemannian manifolds
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2024), pp. 35-49 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper studies the behavior of bounded solutions of the inhomogeneous Schrödinger equation on non-compact Riemannian manifolds under a variation of the right side of the equation. Various problems for homogeneous elliptic equations, in particular the Laplace-Beltrami equation and the stationary Schrödinger equation, have been considered by a number of Russian and foreign authors since the second half of the 20th century. In the first part of this paper, an approach to the formulation of boundary value problems based on the introduction of classes of equivalent functions will be developed. The relationship between the solvability of boundary value problems on an arbitrary non-compact Riemannian manifold with variation of inhomogeneity is also established. In the second part of the work, based on the results of the first part, properties of solutions of the inhomogeneous Schrödinger equation on quasi-model manifolds are investigated, and exact conditions for unique solvability of the Dirichlet problem and some other boundary value problems on these manifolds are found.
Keywords: inhomogeneous Schrödinger equation, boundary value problem, quasi-model Riemannian manifold.
@article{IVM_2024_1_a2,
     author = {E. A. Mazepa and D. K. Ryaboshlykova},
     title = {Asymptotic behavior of solutions of the inhomogeneous {Schr\"odinger} equation on noncompact {Riemannian} manifolds},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--49},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_1_a2/}
}
TY  - JOUR
AU  - E. A. Mazepa
AU  - D. K. Ryaboshlykova
TI  - Asymptotic behavior of solutions of the inhomogeneous Schrödinger equation on noncompact Riemannian manifolds
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 35
EP  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_1_a2/
LA  - ru
ID  - IVM_2024_1_a2
ER  - 
%0 Journal Article
%A E. A. Mazepa
%A D. K. Ryaboshlykova
%T Asymptotic behavior of solutions of the inhomogeneous Schrödinger equation on noncompact Riemannian manifolds
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 35-49
%N 1
%U http://geodesic.mathdoc.fr/item/IVM_2024_1_a2/
%G ru
%F IVM_2024_1_a2
E. A. Mazepa; D. K. Ryaboshlykova. Asymptotic behavior of solutions of the inhomogeneous Schrödinger equation on noncompact Riemannian manifolds. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2024), pp. 35-49. http://geodesic.mathdoc.fr/item/IVM_2024_1_a2/

[1] Grigor'yan A., “Analitic and geometric background of recurrence and non-explosion of the Brownian motion on Riemannian manifolds”, Bull. Amer. Math. Soc., 36:2 (1999), 135–249 | DOI | MR | Zbl

[2] Ancona A., “Negative curved manifolds, elliptic operators, and the Martin boundary”, Ann. Math., 125:3 (1987), 495–536 | DOI | MR | Zbl

[3] Korolkov S.A., “O razreshimosti kraevykh zadach dlya statsionarnogo uravnneiya Shredinegra v neogranichennykh oblastyakh rimanovykh mnogoobrazii”, Differents. uravneniya, 51:6 (2015), 726–732 | DOI | MR | Zbl

[4] Mazepa E.A., “Kraevye zadachi dlya statsionarnogo uravneniya Shredingera na rimanovykh mnogoobraziyakh”, Sib. matem. zhurn., 43:3 (2002), 591–599 | MR | Zbl

[5] Losev A.G., Mazepa E.A., Chebanenko V.Y., “Unbounded solutions of the Stationary Shrödinger equation on Riemannian manifolds”, Comput. Methods and Funct. Theory, 3:2 (2003), 443–451 | DOI | MR | Zbl

[6] Anderson M.T., “The Dirichlet problem at infinity for manifolds of negative curvature”, J. Diff. Geom., 18:4 (1983), 701–721 | MR

[7] Sullivan D., “The Dirichlet problem at infinity for a negatively curved manifold”, J. Diff. Geom., 18:4 (1983), 723–732 | MR | Zbl

[8] Losev A.G., Mazepa E.A., “Ogranichennye resheniya uravneniya Shredingera na rimanovykh proizvedeniyakh”, Algebra i analiz, 13:1 (2001), 84–110

[9] Losev A.G., Filatov V.V., “Ogranichennye resheniya statsionarnogo uravneniya Shredingera s konechnym integralom energii na modelnykh mnogoobraziyakh”, Matem. fiz. i kompyut. modelirovanie, 24:3 (2021), 5–17 | MR

[10] Murata M., “Positive harmonic functions on rotationary symmetric Riemannian manifolds”, Potential Theory, Proc. Intern. Conf. (Nagoya/Japan, 1992) | MR

[11] Ni L., Shi Y., Tam L-F., “Poisson equation, Poincare–Lelong equation and the curvature decay on complete Kahler manifolds”, J. Diff. Geom., 57 (2001), 339–388 | MR | Zbl

[12] Grigor'yan A., Verbitsky I., “Pointwise estimates of solutions to semilinear elliptic equations and inequalities”, J. d'Analyse Mathématique, 137:2 (2019), 559–601 | DOI | MR | Zbl

[13] Munteanu O., Sesum N., “The Poisson equation on complete manifolds with positive spectrum and applications”, Adv. Math., 223:1 (2010), 198–219 | DOI | MR | Zbl

[14] Mastrolia P., Monticelly D.D., Punzo F., “Elliptic and parabolic equations with Dirichlet conditions at infinity on Riemannian manifolds”, Adv. Diff. Equat., 23:1/2 (2018), 89–108 | MR | Zbl

[15] Losev A.G., “O razreshimosti zadachi Dirikhle dlya uravneniya Puassona na nekotorykh nekompaktnykh rimanovykh mnogoobraziyakh”, Differents. uravneniya, 53:12 (2017), 1643–1652 | DOI | Zbl

[16] Mazepa E.A., “O razreshimosti kraevykh zadach dlya uravneniya Puassona na nekompaktnykh rimanovykh mnogoobraziyakh”, Matem. fizika i kompyut. modelirovanie, 20:3 (2017), 136–147 | MR

[17] Losev A.G., Mazepa E.A., “On solvability of the boundary value problems for the inhomogeneous elliptic equations on noncompact Riemannian manifolds”, Probl. anal. – Issues Anal., 7 (25), Spetsvypusk (2018), 101–112 | DOI | MR | Zbl

[18] Losev A.G., Mazepa E.A., “Ogranichennye resheniya uravneniya Shredingera na nekompaktnykh rimanovykh mnogoobraziyakh spetsialnogo vida”, DAN, 367:2 (1999), 166–167 | MR | Zbl

[19] Losev A.G., Mazepa E.A., “Ob asimptoticheskom povedenii resheneii nekotorykh uravnenii ellipticheskogo tipa na nekompaktnykh rimanovykh mnogoobraziyakh”, Izv. vuzov. Matem., 1999, no. 6, 41–49 | Zbl

[20] Grigoryan A.A., Nadirashvili N.S., “Liuvillevy teoremy i vneshnie kraevye zadachi”, Izv. vuzov. Matem., 1987, no. 5, 25–33

[21] Gilbarg D., Trudinger M., Ellipticheskie differentsialnye uravneniya s chastnymi proizvodnymi vtorogo poryadka, Nauka, M., 1989 | MR