Theorems on direct and inverse approximation by algebraic polynomials and piecewise polynomials in the spaces $H^m(a, b)$ and $B^s_{2,q}(a, b)$
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2024), pp. 14-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The best estimates for the approximation error of functions, defined on a finite interval, by algebraic polynomials and piecewise polynomial functions are obtained in the case when the errors are measured in the norms of Sobolev and Besov spaces. We indicate the weighted Besov spaces, whose functions satisfy Jackson-type and Bernstein-type inequalities and, as a consequence, direct and inverse approximation theorems. In a number of cases, exact constants are indicated in the estimates.
Keywords: best approximation by polynomials, sharp error estimate, Bernstein's inequality, Jackson's inequality, direct and inverse theorems.
Mots-clés : orthogonal polynomial
@article{IVM_2024_1_a1,
     author = {R. Z. Dautov},
     title = {Theorems on direct and inverse approximation by algebraic polynomials and piecewise polynomials in the spaces $H^m(a, b)$ and $B^s_{2,q}(a, b)$},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {14--34},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_1_a1/}
}
TY  - JOUR
AU  - R. Z. Dautov
TI  - Theorems on direct and inverse approximation by algebraic polynomials and piecewise polynomials in the spaces $H^m(a, b)$ and $B^s_{2,q}(a, b)$
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 14
EP  - 34
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_1_a1/
LA  - ru
ID  - IVM_2024_1_a1
ER  - 
%0 Journal Article
%A R. Z. Dautov
%T Theorems on direct and inverse approximation by algebraic polynomials and piecewise polynomials in the spaces $H^m(a, b)$ and $B^s_{2,q}(a, b)$
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 14-34
%N 1
%U http://geodesic.mathdoc.fr/item/IVM_2024_1_a1/
%G ru
%F IVM_2024_1_a1
R. Z. Dautov. Theorems on direct and inverse approximation by algebraic polynomials and piecewise polynomials in the spaces $H^m(a, b)$ and $B^s_{2,q}(a, b)$. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2024), pp. 14-34. http://geodesic.mathdoc.fr/item/IVM_2024_1_a1/

[1] Jackson D., Uber die Genauigkeit der Anndiherungs tetiger Funktionen durch ganze rationale Funktionen gegebenen Grades und trigonometrische Summen gegebener Ordnung, Preisschrift und Dissertation, Universität Göttingen, 1911

[2] Bernshtein S.N., “O nailuchshem priblizhenii nepreryvnykh funktsii posredstvom mnogochlenov dannoi stepeni”, Soobsch. Kharkovsk. matem. obsch-va. Ser. 2, 1912, no. 3, 49–194

[3] Petrushev P.P., “Direct and converse theorems for spline and rational approximation and Besov spaces”, Function Spaces and Applications, Lect. Notes Math., 1302, eds. Cwikel M., Peetre J., Sagher Y., Wallin H., Springer, Berlin–Heidelberg, 1988, 363–377 | DOI | MR

[4] DeVore R., Lorentz G.G., Constructive Approximation, Springer, Berlin, 1993 | MR | Zbl

[5] Nikolski S.M., Approximation of Functions of Several Variables and Imbedding Theorems, Springer-Verlag, Berlin–Heidelberg–New York, 1975 | MR | Zbl

[6] Babuška I., Guo B.Q., “Direct and inverse approximation theorems for the p-version of the finite element method in the framework of weighted Besov spaces, Part III: Inverse approximation theorems”, J. Approx. Theory, 173 (2013), 122–157 | DOI | MR | Zbl

[7] Timan A.F., Theory of Approximation of Functions of a Real Variable, Pergamon, Oxford, 1963 | MR | Zbl

[8] Schumaker L.L., Spline Functions: Basic Theory, Wiley, New York, 1981 | MR | Zbl

[9] Triebel H., Interpolation theory, function spaces, differential operators, North-Holland, Amsterdam, 1978 | MR | Zbl

[10] Nicaise S., “Jacobi polynomials, weighted Sobolev spaces and approximation results of some singularities”, Math. Nachrichten, 213 (2000), 117–140 | 3.0.CO;2-A class='badge bg-secondary rounded-pill ref-badge extid-badge'>DOI | MR | Zbl

[11] Babuška I., Guo B.Q., “Direct and inverse approximation theorems of the p-version of the finite element method in the framework of weighted Besov spaces, Part I: Approximability of functions in weighted Besov spaces”, SIAM J. Numer. Anal., 39:5 (2002), 1512–1538 | DOI | MR

[12] Dautov R.Z., Timerbaev M.R., “Sharp estimates for the polynomial approximation in weighted Sobolev spaces”, Diff. Equat., 51:7 (2015), 886–894 | DOI | MR | Zbl

[13] Guessab A., Milovanović G.V., “Weighted $L^2$-analogues of Bernstein's inequality and classical orthogonal polynomials”, J. Math. Anal. Appl., 182:1 (1994), 244–249 | DOI | MR | Zbl

[14] Babuška I., Guo B.Q., “Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions”, Numer. Math., 85:2 (2000), 219–255 | DOI | MR | Zbl

[15] Babuška I., Guo B.Q., “Direct and inverse approximation theorems of the p-version of the finite element method in the framework of weighted Besov spaces, Part II: Optimal rate of convergence of the p-version finite element solutions”, Math. Models Methods Appl. Sci., 12:5 (2002), 689–719 | DOI | MR | Zbl

[16] Widlund O., “On best error bounds for approximation by piecewise polynomial functions”, Numer. Math., 27 (1977), 327–338 | DOI | MR | Zbl

[17] Babuška I., Kellogg R.B., Pitkäranta J., “Direct and inverse error estimates for finite elements with mesh refinements”, Numer. Math., 33 (1979), 447–471 | DOI | MR | Zbl

[18] Szego G., Orthogonal Polynomials, Amer. Math. Soc. Collog. Publ., 23, 4th ed., Amer. Math. Soc., Providence, RI, 1975 | MR | Zbl

[19] Guo B.-Y., Shen J., Wang L.-L., “Generalized Jacobi polynomials/functions and their applications”, Appl. Numer. Math., 59:5 (2009), 1011–1028 | DOI | MR | Zbl

[20] Dautov R.Z., “Pryamye i obratnye teoremy approksimatsii funktsii algebraicheskimi polinomami i splainami v normakh prostranstva Coboleva”, Izv. vuzov. Matem., 2022, no. 6, 79–86

[21] Kudryavtsev L.D., “Ob ekvivalentnykh normakh v vesovykh prostranstvakh”, Tr. MIAN SSSR, 170, 1984, 161–190 | Zbl

[22] de-Vore R., Scherer K., “Interpolation of linear operators on Sobolev spaces”, Ann. of Math., 109 (1979), 583–599 | DOI | MR | Zbl

[23] Schwab C., p- and hp- finite element methods: theory and applications to solid and fluid mechanics, Numer. Math. Sci. Comput., Oxford University Press, Oxford, 1999 | MR