An estimate for the sum of a Dirichlet series on an arc of bounded slope
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2024), pp. 3-13 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The article considers the behavior of the sum of the Dirichlet series $F(s)=\displaystyle \sum\limits_{n} a_ne^{\lambda_ns},$ $0<\lambda_{n}\uparrow\infty, $ which converges absolutely in the left half-plane $\Pi_0$, on a curve arbitrarily approaching the imaginary axis — the boundary of this half-plane. We have obtained a solution to the following problem: Under what additional conditions on $\gamma$ will the strengthened asymptotic relation be valid in the case when the argument $s$ tends to the imaginary axis along $\gamma$ over a sufficiently massive set.
Keywords: Dirichlet series, lacunary power series, curve of bounded slope, convergence half-plane.
Mots-clés : maximal term
@article{IVM_2024_1_a0,
     author = {T. I. Belous and A. M. Gaisin and R. A. Gaisin},
     title = {An estimate for the sum of a {Dirichlet} series on an arc of bounded slope},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--13},
     year = {2024},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_1_a0/}
}
TY  - JOUR
AU  - T. I. Belous
AU  - A. M. Gaisin
AU  - R. A. Gaisin
TI  - An estimate for the sum of a Dirichlet series on an arc of bounded slope
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 3
EP  - 13
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_1_a0/
LA  - ru
ID  - IVM_2024_1_a0
ER  - 
%0 Journal Article
%A T. I. Belous
%A A. M. Gaisin
%A R. A. Gaisin
%T An estimate for the sum of a Dirichlet series on an arc of bounded slope
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 3-13
%N 1
%U http://geodesic.mathdoc.fr/item/IVM_2024_1_a0/
%G ru
%F IVM_2024_1_a0
T. I. Belous; A. M. Gaisin; R. A. Gaisin. An estimate for the sum of a Dirichlet series on an arc of bounded slope. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 1 (2024), pp. 3-13. http://geodesic.mathdoc.fr/item/IVM_2024_1_a0/

[1] Gaisin A.M., “Otsenki rosta i ubyvaniya tseloi funktsii beskonechnogo poryadka na krivykh”, Matem. sb., 194:8 (2003), 55–82 | DOI | Zbl

[2] Gaisin A.M., Gaisin R.A., “Nepolnye sistemy eksponent na dugakh i nekvazianaliticheskie klassy Karlemana. II”, Algebra i analiz, 27:1 (2015), 49–73

[3] Gaisin R.A., “Interpolyatsionnye posledovatelnosti i nepolnye sistemy eksponent na krivykh”, Matem. sb., 212:5 (2021), 58–79 | DOI | MR | Zbl

[4] Gaisin A.M., “Povedenie logarifma modulya summy ryada Dirikhle, skhodyaschegosya v poluploskosti”, Izv. RAN, Ser. Matem., 58:4 (1994), 173–185 | Zbl

[5] Skaskiv O.B., “K teoreme Vimana o minimume modulya analiticheskikh v edinichnom kruge funktsii”, Izv. AN SSSR, Ser. Matem., 53:4 (1989), 833–850

[6] Leontev A.F., Tselye funktsii. Ryady eksponent, Nauka, M., 1983 | MR

[7] Gaisin A.M., “Povedenie cummy ryada Dirikhle zadannogo rosta”, Matem. zametki, 50:4 (1991), 47–56 | Zbl

[8] Gaisin A.M., Belous T.I., “Maksimalnyi chlen ryada Dirikhle, skhodyaschegosya v poluploskosti: teorema ob ustoichivosti”, Ufimsk. matem. zhurn., 14:3 (2022), 23–34 | Zbl