Analysis of the formation of an inner solution near the crest of steep surface waves of infinite depth
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 94-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Surface periodic waves of infinite depth are investigated. The boundary value problem is formulated in the parametric plane with respect to the Zhukovsky function. By making use of the discrete Fourier transform, the problem is reduced to a finite system of nonlinear transcendental equations. It is shown that with an increase in the steepness of the waves, an inner solution is formed near the crest, and under the corresponding scaling of the sought function this solution is independent of the steepness. It is shown that the numerical reproduction of the inner solution is a key factor for accurate calculations of the almost-highest gravity waves.
Keywords: surface wave, potential flow, inner solution.
@article{IVM_2024_12_a8,
     author = {D. V. Maklakov and R. V. Kazantsev},
     title = {Analysis of the formation of an inner solution near the crest of steep surface waves of infinite depth},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {94--100},
     year = {2024},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_12_a8/}
}
TY  - JOUR
AU  - D. V. Maklakov
AU  - R. V. Kazantsev
TI  - Analysis of the formation of an inner solution near the crest of steep surface waves of infinite depth
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 94
EP  - 100
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_12_a8/
LA  - ru
ID  - IVM_2024_12_a8
ER  - 
%0 Journal Article
%A D. V. Maklakov
%A R. V. Kazantsev
%T Analysis of the formation of an inner solution near the crest of steep surface waves of infinite depth
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 94-100
%N 12
%U http://geodesic.mathdoc.fr/item/IVM_2024_12_a8/
%G ru
%F IVM_2024_12_a8
D. V. Maklakov; R. V. Kazantsev. Analysis of the formation of an inner solution near the crest of steep surface waves of infinite depth. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 94-100. http://geodesic.mathdoc.fr/item/IVM_2024_12_a8/

[1] Stokes G.G., “On the Theory of Oscillatory Waves”, Trans. Camb. Phil. Soc., 8 (1847), 441-455

[2] Longuet-Higgins M.S., Fox M.J.H., “Theory of the almost-highest wave: the inner solution”, J. Fluid Mech., 80:4 (1977), 721-741 | DOI | MR | Zbl

[3] Longuet-Higgins M.S., Fox M.J.H., “Theory of the almost-highest wave, P. 2, Matching and analytical extension”, J. Fluid Mech., 85:4 (1978), 769-786 | DOI | MR | Zbl

[4] Maklakov D.V., “Almost-highest gravity waves on water of finite depth”, Euro. J. Appl. Math., 13:1 (2002), 67-93 | DOI | MR | Zbl

[5] Gurevich M.I., Teoriya strui idealnoi zhidkosti, 2-e izd., Nauka, M., 1979

[6] Levi-Civita T., “Détermination rigoureuse des ondes permanentes d'ampleur finie”, Math. Ann., 93:1 (1925), 264-314 | DOI | MR

[7] Lushnikov P.M., Dyachenko S.A., Silantyev D.A., “New conformal mapping for adaptive resolving of the complex singularities of Stokes wave”, Proc. R. Soc. Lond. A, 473 (2017), 20170198 | MR | Zbl