On the Hyers–Ulam stability of Bernoulli's differential equation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 85-93 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The aim of this paper is to present the results on the Hyers–Ulam–Rassias stability and the Hyers–Ulam stability for Bernoulli's differential equation. The argument makes use of a fixed point approach. Some examples are given to illustrate the main results.
Keywords: Ulam–Hyers stability, Bernoulli's differential equation, fixed point approach, generalized complete metric space, Lipschitz condition.
@article{IVM_2024_12_a7,
     author = {R. Shah and N. Irshad},
     title = {On the {Hyers{\textendash}Ulam} stability of {Bernoulli's} differential equation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {85--93},
     year = {2024},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_12_a7/}
}
TY  - JOUR
AU  - R. Shah
AU  - N. Irshad
TI  - On the Hyers–Ulam stability of Bernoulli's differential equation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 85
EP  - 93
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_12_a7/
LA  - ru
ID  - IVM_2024_12_a7
ER  - 
%0 Journal Article
%A R. Shah
%A N. Irshad
%T On the Hyers–Ulam stability of Bernoulli's differential equation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 85-93
%N 12
%U http://geodesic.mathdoc.fr/item/IVM_2024_12_a7/
%G ru
%F IVM_2024_12_a7
R. Shah; N. Irshad. On the Hyers–Ulam stability of Bernoulli's differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 85-93. http://geodesic.mathdoc.fr/item/IVM_2024_12_a7/

[1] Momoniat E., Myers T.G., Banda M., Charpin J., “Differential Equation with Applications to Industry”, Int. J. Diff. Equat., 2012, 491874

[2] Obloza M., “Hyers stability of the linear differential equation”, Rocznik Nauk.-Dydakt. Prac. Mat., 1993, no. 13, 259–270 | MR | Zbl

[3] Obloza M., “Connections between Hyers and Lyapunov stability of the ordinary differential equations”, Rocznik Nauk.-Dydakt. Prac. Mat., 1997, no. 14, 141–146 | MR | Zbl

[4] Alsina C., Ger R., “On Some Inequalities and Stability Results Related to the Exponential Function”, J. Inequal. Appl., 2:4 (1998), 373–380 | MR | Zbl

[5] Jung S.-M., “Hyers–Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 17:10 (2004), 1135–1140 | DOI | MR | Zbl

[6] Jung S.M., “Hyers–Ulam stability of linear differential equations of first order, III”, J. Math. Anal. Appl., 311:1 (2005), 139–146 | DOI | MR | Zbl

[7] Jung S.M., “Hyers–Ulam stability of linear differential equations of first order, II”, Appl. Math. Lett., 19:9 (2006), 854–858 | DOI | MR | Zbl

[8] Abdollahpour M.R., Najati A., “Stability of linear differential equations of third order”, Appl. Math. Lett., 24:11 (2011), 1827–1830 | DOI | MR | Zbl

[9] Abdollahpour M.R., Park C., “Hyers–Ulam stability of a class of differential equations of second order”, J. Comput. Anal. Appl., 18:5 (2015), 899–903 | MR | Zbl

[10] Abdollahpour M.R., Najati A., Park C., Rassias T.M., Shin D.Y., “Approximate perfect differential equations of second order”, Adv. Diff. Equat., 2012:225 (2012) | MR

[11] Gordji M.E., Cho Y.J., Ghaemi M.B., Alizadeh B., “Stability of the exact second order partial differential equations”, J. Inequal. Appl., 2011:8 (2011) | MR

[12] Li Y., Shen Y., “Hyers–Ulam stability of linear differential equations of second order”, Appl. Math. Lett., 23:3 (2010), 306–309 | DOI | MR | Zbl

[13] Lv J., Wang J., Liu R., “Hyers–Ulam stability of linear quaternion–valued differential equations”, Electronic J. Diff. Equat., 2023, no. 21, 1–15 | MR

[14] Suo L., Feckan M., Wang J., “Controllability and observability for linear quaternion–valued impulsive differential equations”, Commun. Nonlinear Sci. and Numerical Simulation, 124 (2023), 107276 | DOI | MR | Zbl

[15] Suo L., Wang J., “Stability of quaternion–valued impuslive differential equations”, Rocky Mountain J. Math., 53:1 (2023), 209–240 | DOI | MR | Zbl

[16] Idriss E., Belaid B., “Ulam–Hyers stability of some linear differential equations of second order”, Examples and Counterexamples, 3 (2023), 100110 | DOI

[17] Ciplea S.A., Lungu N., Marian D., “Hyers–Ulam stability of a general linear partial differential equation”, Aequat. Math., 97 (2023), 649–657 | DOI | MR | Zbl

[18] Fakunle I., Arawomo P.O., “Hyers–Ulam–Rassias stability of some perturbed nonlinear second order ordinary differential equations”, Proyecciones J. Math. (Antofagasta), 42:5 (2023), 1157–1175 | DOI | MR | Zbl

[19] Makhlouf A.B., El-hady E., Arfaoui H., Boulaaras S., and Mchiri L., “Stability of some generalized fractional differential equations in the sense of Ulam–Hyers–Rassias”, Bound Value Probl., 2023:8 (2023) | MR

[20] Luxemburg W.A.J., “On the convergence of successive approximations in the theory of ordinary differential equations, II”, Nederl. Akad. Wetensch. Proc. Ser., 20 (1958), 540–546 | DOI | MR

[21] Diaz J.B., Margolis B., “A fixed point theorem of the alternative, for contractions on a generalized complete metric space”, Bull. Amer. Math. Soc., 74:2 (1968), 305–309 | DOI | MR | Zbl

[22] Cǎdariu L., Radu V., “On the stability of the Cauchy functional equation: a fixed point approach”, Grazer Math. Ber., 346 (2004), 43–52 | MR