@article{IVM_2024_12_a7,
author = {R. Shah and N. Irshad},
title = {On the {Hyers{\textendash}Ulam} stability of {Bernoulli's} differential equation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {85--93},
year = {2024},
number = {12},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_12_a7/}
}
R. Shah; N. Irshad. On the Hyers–Ulam stability of Bernoulli's differential equation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 85-93. http://geodesic.mathdoc.fr/item/IVM_2024_12_a7/
[1] Momoniat E., Myers T.G., Banda M., Charpin J., “Differential Equation with Applications to Industry”, Int. J. Diff. Equat., 2012, 491874
[2] Obloza M., “Hyers stability of the linear differential equation”, Rocznik Nauk.-Dydakt. Prac. Mat., 1993, no. 13, 259–270 | MR | Zbl
[3] Obloza M., “Connections between Hyers and Lyapunov stability of the ordinary differential equations”, Rocznik Nauk.-Dydakt. Prac. Mat., 1997, no. 14, 141–146 | MR | Zbl
[4] Alsina C., Ger R., “On Some Inequalities and Stability Results Related to the Exponential Function”, J. Inequal. Appl., 2:4 (1998), 373–380 | MR | Zbl
[5] Jung S.-M., “Hyers–Ulam stability of linear differential equations of first order”, Appl. Math. Lett., 17:10 (2004), 1135–1140 | DOI | MR | Zbl
[6] Jung S.M., “Hyers–Ulam stability of linear differential equations of first order, III”, J. Math. Anal. Appl., 311:1 (2005), 139–146 | DOI | MR | Zbl
[7] Jung S.M., “Hyers–Ulam stability of linear differential equations of first order, II”, Appl. Math. Lett., 19:9 (2006), 854–858 | DOI | MR | Zbl
[8] Abdollahpour M.R., Najati A., “Stability of linear differential equations of third order”, Appl. Math. Lett., 24:11 (2011), 1827–1830 | DOI | MR | Zbl
[9] Abdollahpour M.R., Park C., “Hyers–Ulam stability of a class of differential equations of second order”, J. Comput. Anal. Appl., 18:5 (2015), 899–903 | MR | Zbl
[10] Abdollahpour M.R., Najati A., Park C., Rassias T.M., Shin D.Y., “Approximate perfect differential equations of second order”, Adv. Diff. Equat., 2012:225 (2012) | MR
[11] Gordji M.E., Cho Y.J., Ghaemi M.B., Alizadeh B., “Stability of the exact second order partial differential equations”, J. Inequal. Appl., 2011:8 (2011) | MR
[12] Li Y., Shen Y., “Hyers–Ulam stability of linear differential equations of second order”, Appl. Math. Lett., 23:3 (2010), 306–309 | DOI | MR | Zbl
[13] Lv J., Wang J., Liu R., “Hyers–Ulam stability of linear quaternion–valued differential equations”, Electronic J. Diff. Equat., 2023, no. 21, 1–15 | MR
[14] Suo L., Feckan M., Wang J., “Controllability and observability for linear quaternion–valued impulsive differential equations”, Commun. Nonlinear Sci. and Numerical Simulation, 124 (2023), 107276 | DOI | MR | Zbl
[15] Suo L., Wang J., “Stability of quaternion–valued impuslive differential equations”, Rocky Mountain J. Math., 53:1 (2023), 209–240 | DOI | MR | Zbl
[16] Idriss E., Belaid B., “Ulam–Hyers stability of some linear differential equations of second order”, Examples and Counterexamples, 3 (2023), 100110 | DOI
[17] Ciplea S.A., Lungu N., Marian D., “Hyers–Ulam stability of a general linear partial differential equation”, Aequat. Math., 97 (2023), 649–657 | DOI | MR | Zbl
[18] Fakunle I., Arawomo P.O., “Hyers–Ulam–Rassias stability of some perturbed nonlinear second order ordinary differential equations”, Proyecciones J. Math. (Antofagasta), 42:5 (2023), 1157–1175 | DOI | MR | Zbl
[19] Makhlouf A.B., El-hady E., Arfaoui H., Boulaaras S., and Mchiri L., “Stability of some generalized fractional differential equations in the sense of Ulam–Hyers–Rassias”, Bound Value Probl., 2023:8 (2023) | MR
[20] Luxemburg W.A.J., “On the convergence of successive approximations in the theory of ordinary differential equations, II”, Nederl. Akad. Wetensch. Proc. Ser., 20 (1958), 540–546 | DOI | MR
[21] Diaz J.B., Margolis B., “A fixed point theorem of the alternative, for contractions on a generalized complete metric space”, Bull. Amer. Math. Soc., 74:2 (1968), 305–309 | DOI | MR | Zbl
[22] Cǎdariu L., Radu V., “On the stability of the Cauchy functional equation: a fixed point approach”, Grazer Math. Ber., 346 (2004), 43–52 | MR