On one algorithm for constructing the Fourier transform of the function ${{\overline{V }}_{m}}\left( x \right)$ to determine a discrete analog of one differential operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 44-56 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper considers the problem of constructing the Fourier transform of a harrow-shaped function to determine a discrete analog of the differential operator, which is used in constructing optimal quadrature formulas in L. Hörmander space. In addition, the problem of constructing a discrete analog of a specific operator in a particular case is considered.
Keywords: generalized function, Sobolev space, error functional, extremal function.
Mots-clés : interpolation formula
@article{IVM_2024_12_a4,
     author = {Ik. I. Jalolov and O. I. Jalolov},
     title = {On one algorithm for constructing the {Fourier} transform of the function ${{\overline{V }}_{m}}\left( x \right)$ to determine a discrete analog of one differential operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {44--56},
     year = {2024},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_12_a4/}
}
TY  - JOUR
AU  - Ik. I. Jalolov
AU  - O. I. Jalolov
TI  - On one algorithm for constructing the Fourier transform of the function ${{\overline{V }}_{m}}\left( x \right)$ to determine a discrete analog of one differential operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 44
EP  - 56
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_12_a4/
LA  - ru
ID  - IVM_2024_12_a4
ER  - 
%0 Journal Article
%A Ik. I. Jalolov
%A O. I. Jalolov
%T On one algorithm for constructing the Fourier transform of the function ${{\overline{V }}_{m}}\left( x \right)$ to determine a discrete analog of one differential operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 44-56
%N 12
%U http://geodesic.mathdoc.fr/item/IVM_2024_12_a4/
%G ru
%F IVM_2024_12_a4
Ik. I. Jalolov; O. I. Jalolov. On one algorithm for constructing the Fourier transform of the function ${{\overline{V }}_{m}}\left( x \right)$ to determine a discrete analog of one differential operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 44-56. http://geodesic.mathdoc.fr/item/IVM_2024_12_a4/

[1] Sobolev S.L., Vvedenie v teoriyu kubaturnykh formul, Nauka, M., 1974, 808 pp. | MR

[2] Zhamolov Z.Zh., “Ob odnom raznostnom analoge operatora $\frac{{{d}^{2m}}}{d{{x}^{2m}}}$ i ego postroenie”, Pryamye i obratnye zadachi dlya differentsialnykh uravnenii s chastnymi proizvodnymi i ikh prilozheniya, Fan, Tashkent, 1978, 97–108

[3] Shadimetov Kh.M., “Diskretnyi analog differentsialnogo operatora $\frac{{{d}^{2m}}}{d{{x}^{2m}}}$ i ego postroenie”, Vopr. vychisl. i prikl. matem., 1985, no. 79, 22–35 | Zbl

[4] Shadimetov Kh.M., Khaëtov A.R., “Postroenie diskretnogo analoga differentsialnogo operatora $\frac{{{d}^{2m}}}{d{{x}^{2m}}}-\frac{{{d}^{2m-2}}}{d{{x}^{2m-2}}}$”, Uzb. matem. zhurn., 2004, no. 2, 85–95

[5] Khaëtov A.R., “Postroenie diskretnogo analoga differentsialnogo operatora $\frac{{{d}^{4}}}{d{{x}^{4}}}+2\frac{{{d}^{2}}}{d{{x}^{2}}}+1$ i ego svoistva”, Uzb. matem. zhurn., 2009, no. 3, 81–88 | MR

[6] Shadimetov Kh.M., Mamatova N.Kh., “Sostavnye kubaturnye formuly na reshetke”, Izv. vuzov. Matem., 2023, no. 11, 59–74 | Zbl

[7] Gabdulkhaev B.G., “O nepreryvnosti i kompaktnosti singulyarnykh integralnykh operatorov”, Izv. vuzov. Matem., 2009, no. 8, 3–10 | Zbl

[8] Volevich L.R., Paneyakh B.P., “Nekotorye prostranstva obobschennykh funktsii i teoremy vlozheniya”, UMN, 20:I (1965), 3–74 | Zbl

[9] Jalolov I.I., “A differential operator of order $2m$ and its fundamental solution”, Uzb. Math. J., 1 (2018), 65–72 | DOI | MR | Zbl

[10] Jalolov I.I., “The algorithm for constructing a differential operator of $2$nd order and finding a fundamental solution”, AIP Conf. Proc., 2365:1 (2021), 020015 | DOI

[11] Zhalolov Ik.I., “Algoritm postroeniya diskretnogo analoga $D_3^{h}\left[ \beta \right]$ odnogo operatora”, Probl. vychisl. i prikl. matem., 2015, no. 2, 48–52

[12] Jalolov I.I., “Algorithm for constructing a discrete analogue $D_{4}^{{}}\left[ \beta \right]$ of a differential operator”, AIP Conf. Proc., 2781:1 (2023), 020041 | DOI

[13] Gradshtein I.S., Ryzhik I.M., Tablitsy integralov, summ, ryadov i proizvedenii, Nauka, M., 1971, 1108 pp. | MR

[14] Shadimetov Kh.M., Zhalolov Ik.I., “Optimalnaya kvadraturnaya formula v prostranstve Soboleva”, Probl. vychisl. i prikl. matem., 2016, no. 2, 94–102

[15] Danilov V.L. i dr., Matematicheskii analiz, Spravochnaya matematicheskaya biblioteka, Fizmatgiz, M., 1961, 438 pp.

[16] Shadimetov Kh.M., Optimalnye reshetchatye kvadraturnye i kubaturnye formuly v prostranstvakh Soboleva, Diss. dok. fiz.-matem. nauk: 01.01.07, Tashkent, 2002, 218 pp.

[17] Gelfond A.O., Ischislenie konechnykh raznostei, Nauka, M., 1967, 375 pp. | MR

[18] Hayotov A.R., Boboev S.S., “Optimal quadrature formulas for computing of Fourier integrals in a Hilbert space”, Probl. vychisl. i prikl. matem., 4 (2020), 73–84

[19] Hayotov A.R., Jeon S., Lee Ch.-O., “On an optimal quadrature formula for approximation of Fourier integrals in the space $L_{2}^{\left( 1 \right)}$”, J. Comput. Appl. Math., 372 (2020), 112713 | DOI | MR | Zbl

[20] Jalolov O.I., “Weight optimal order of convergence cubature formulas in Sobolev space”, AIP Conf. Proc., 2365:1 (2021), 020014 | DOI

[21] Jalolov O.I., “Weight optimal order of convergence cubature formulas in Sobolev space $\overline{L}_{p}^{\left( m \right)}\left( {{K}_{n}} \right)$”, AIP Conf. Proc., 2781:1 (2023), 020066 | DOI