On the regularization of one class of sum-difference equations with periodic coefficients
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 38-43 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

{Let $D$ be a square with the boundary $\Gamma$. A four-element linear sum-difference equation is considered in the class of functions that are holomorphic outside $D$ and vanish at infinity. The coefficients of the equation and the free term are holomorphic in $D$. The solution is sought in the form of a Cauchy-type integral over $\Gamma$ with unknown density. Its boundary values satisfy the Hölder condition on any compact set in $\Gamma$ that does not contain vertices. At most, logarithmic singularities are allowed at the vertices. To regularize the equation on $\Gamma$, a piecewise linear Carleman shift is introduced, which changes the orientation and still has fixed points. It is continuous at the vertices, but its derivatives are discontinuous at them. The regularization of uranium was carried out and the condition for its equivalence was found. Various applications and generalizations are indicated.
Keywords: sum-difference equation, regularization method
Mots-clés : Carleman problem.
@article{IVM_2024_12_a3,
     author = {F. N. Garif'yanov and E. V. Strezhneva},
     title = {On the regularization of one class of sum-difference equations with periodic coefficients},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {38--43},
     year = {2024},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_12_a3/}
}
TY  - JOUR
AU  - F. N. Garif'yanov
AU  - E. V. Strezhneva
TI  - On the regularization of one class of sum-difference equations with periodic coefficients
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 38
EP  - 43
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_12_a3/
LA  - ru
ID  - IVM_2024_12_a3
ER  - 
%0 Journal Article
%A F. N. Garif'yanov
%A E. V. Strezhneva
%T On the regularization of one class of sum-difference equations with periodic coefficients
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 38-43
%N 12
%U http://geodesic.mathdoc.fr/item/IVM_2024_12_a3/
%G ru
%F IVM_2024_12_a3
F. N. Garif'yanov; E. V. Strezhneva. On the regularization of one class of sum-difference equations with periodic coefficients. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 38-43. http://geodesic.mathdoc.fr/item/IVM_2024_12_a3/

[1] Napalkov V.V., Uravneniya svertki v mnogomernykh prostranstvakh, Nauka, M., 1982

[2] Aksenteva E.P., Garifyanov F.N., “Sum-difference equation for analytic functions generated by pentagon and its application”, Lobachevskii J. Math., 37:2 (2016), 101–104 | DOI | MR | Zbl

[3] Garifyanov F.N., “O regulyarizatsii odnogo klassa raznostnykh uravnenii”, Sib. matem. zhurn., 42:5 (2001), 1012–1017 | MR | Zbl

[4] Garifyanov F.N., “Polielementnye uravneniya dlya funktsii, analiticheskikh v ploskosti s razrezami”, Sib. matem. zhurn., 57:2 (2016), 276–281 | MR | Zbl

[5] Mikhlin S.G., Lektsii po lineinym integralnym uravneniyam, Fizmatgiz, M., 1959

[6] Aksenteva E.P., Garifyanov F.N., “K issledovaniyu integralnogo uravneniya s yadrom Karlemana”, Izv. vuzov. Matem., 27:4 (1983), 43–51 | MR | Zbl

[7] Biberbakh L., Analiticheskoe prodolzhenie, Nauka, M., 1967