Certain generalizations of Jacobi polynomial and their properties
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 20-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Jacobi polynomial $P_{n}^{\left( \alpha ,\beta \right)}(x)$ is a well-known orthogonal polynomial. In the present work, several new properties of generalized Jacobi polynomial $P_{n,\tau}^{\left( \alpha ,\gamma,\beta \right)}(x)$ (Waghela D., Rao S.B. A Note on Sequence of Functions associated with the Generalized Jacobi polynomial, Researches Math. 31 (2), 1–18 (2023)) and its special case $P_{n}^{\left( \alpha ,\gamma,\beta \right)}(x)$ have been studied, which along with different representations of the said generalization includes crucial orthogonality property, generating function, results involving integral representation, differentiation of generalized Jacobi polynomial; also many well-known transformations of this generalized polynomial have been obtained.
Mots-clés : Jacobi polynomial, Rodrigues formula, Laplace transform, Euler (beta) transform
Keywords: generalized Jacobi polynomial, orthogonality, Mellin transform, Whittaker transform.
@article{IVM_2024_12_a2,
     author = {D. Waghela and S. B. Rao},
     title = {Certain generalizations of {Jacobi} polynomial and their properties},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--37},
     year = {2024},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_12_a2/}
}
TY  - JOUR
AU  - D. Waghela
AU  - S. B. Rao
TI  - Certain generalizations of Jacobi polynomial and their properties
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 20
EP  - 37
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_12_a2/
LA  - ru
ID  - IVM_2024_12_a2
ER  - 
%0 Journal Article
%A D. Waghela
%A S. B. Rao
%T Certain generalizations of Jacobi polynomial and their properties
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 20-37
%N 12
%U http://geodesic.mathdoc.fr/item/IVM_2024_12_a2/
%G ru
%F IVM_2024_12_a2
D. Waghela; S. B. Rao. Certain generalizations of Jacobi polynomial and their properties. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 20-37. http://geodesic.mathdoc.fr/item/IVM_2024_12_a2/

[1] Rainville E.D., Special Functions, The MacMillan Company, New York, 1960 | MR | Zbl

[2] Szegö G., Orthogonal Polynomials, American Mathematical society, Providence, Rhode Island, 1939 | MR

[3] Virchenko N., Kalla S.L., Al-Zamel A., “Some Results on a Generalized Hypergeometric Function”, Integral Transforms and Special Functions, 12:1 (2001), 89–100 | DOI | MR | Zbl

[4] Waghela D., Rao S.B., “A Note on Sequence of Functions associated with the Generalized Jacobi polynomial”, Researches Math., 31:2 (2023), 1–18 | DOI

[5] Rao S.B., Prajapati J.C., Shukla A.K., “Wright type hypergeometric functions and its properties”, Adv. Pure Math., 3:3 (2013), 335–342 | DOI

[6] Rao S.B., Shukla A.K., “Note on Generalized Hypergeometric Function”, Integral Transforms and Special Functions, 24:11 (2013), 896–904 | DOI | MR | Zbl

[7] Rao S.B., Patel A.D., Prajapati J.C., Shukla A.K., “On Sequence of Functions Containing Generalized Hypergeometric Function”, Math. Sci. Research J., 17:4 (2013), 98–110 | MR | Zbl

[8] Rao S.B., “Explicit Representation and Some Integral Transforms of Sequence of Functions Associated with the Wright type Generalized Hypergeometric Function”, Global J. Pure and Appl. Math., 13:9 (2017), 6703–6712

[9] Rao S.B., Patel A.D., Prajapati J.C., Shukla A.K., “Some properties of generalized hypergeometric function”, Commun. Korean Math. Soc., 28:2 (2013), 303–317 | DOI | MR | Zbl

[10] Rao S.B., Prajapati J.C., Patel A.D., Shukla A.K., “Some properties of Wright-type generalized hypergeometric function via fractional calculus”, Adv. Diff. Equat., 2014:119 (2014) | MR

[11] Rao S.B., Some Studies on Wright Type Generalized Hypergeometric Function, Ph.D thesis, Sardar Vallabhbhai National Institute of Technology (SVNIT), Surat, India, 2014 | Zbl

[12] Srivastava H.M., Manocha H.L., A Treatise on Generating Functions, Ellis Horwood, Chichester; John Wiley and Sons, New York, 1984 | MR | Zbl

[13] Sneddon I.N., The Use of Integral Transforms, Tata McGraw-Hill Publ., New Delhi, 1979

[14] Whittaker E.T., Watson G.N., A Course in Modern Analysis, 4th ed., Cambridge Univ. Press, 1996 | MR