On the infinite number of eigenvalues of the two-particle Schrödinger operator on a lattice
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 3-11 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the Schrödinger operator $H(\mathbf{k})=H_0(\mathbf{k})-V, \mathbf{k}\in \mathbb{T}^2,$ associated with a system of two particles on a two-dimensional lattice. It is shown that the subspaces of even as well as odd functions are invariant under operator $H(\mathbf{k}).$ The sets of quasimomenta $\mathcal{K}(1),$ $\mathcal{K}(2)$ and the class of potentials $\mathrm{P}(1),$ $\mathrm{P}(2)$ are described, for which the operator $H(\mathbf{k})$ has infinite number of eigenvalues $z_n(\mathbf{k}), n\in \mathbb{Z}_+$, for $\mathbf{k}\in \mathcal{K}(j), \hat{v}\in \mathrm{P}(j)$. The explicit form of $z_n(\mathbf{k})$ and the rate of convergence of the sequence $z_n(\mathbf{k})$ to the bottom of the essential spectrum are found.
Keywords: lattice, Hamiltonian, Schrödinger operator, quasimomentum, width of the continuous spectrum, potential, eigenvalue, eigenfunction.
@article{IVM_2024_12_a0,
     author = {J. I. Abdullaev and A. M. Khalkhuzhaev and Yu. S. Shotemirov},
     title = {On the infinite number of eigenvalues of the two-particle {Schr\"odinger} operator on a lattice},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--11},
     year = {2024},
     number = {12},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_12_a0/}
}
TY  - JOUR
AU  - J. I. Abdullaev
AU  - A. M. Khalkhuzhaev
AU  - Yu. S. Shotemirov
TI  - On the infinite number of eigenvalues of the two-particle Schrödinger operator on a lattice
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 3
EP  - 11
IS  - 12
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_12_a0/
LA  - ru
ID  - IVM_2024_12_a0
ER  - 
%0 Journal Article
%A J. I. Abdullaev
%A A. M. Khalkhuzhaev
%A Yu. S. Shotemirov
%T On the infinite number of eigenvalues of the two-particle Schrödinger operator on a lattice
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 3-11
%N 12
%U http://geodesic.mathdoc.fr/item/IVM_2024_12_a0/
%G ru
%F IVM_2024_12_a0
J. I. Abdullaev; A. M. Khalkhuzhaev; Yu. S. Shotemirov. On the infinite number of eigenvalues of the two-particle Schrödinger operator on a lattice. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 12 (2024), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2024_12_a0/

[1] Mattis D.C., “The Few-Body Problem on a Lattice”, Rev. Modern Phys., 58:2 (1986), 361-379 | DOI | MR

[2] Faria da Veiga P.A., Ioriatti L., O'Carroll M., “Energy-momentum spectrum of some two-particle lattice Schrödinger Hamiltonians”, Phys. Rev. E, 66:1 (2002) | MR

[3] {AbdullaevIkromov} Abdullaev J.I., Ikromov I.A., “Finiteness of the number of eigenvalues of the two-particle Schrödinger operator on a lattice”, Theor. and Math. Phys., 152:3 (2007), 1299–1312 | DOI | MR | Zbl

[4] Abdullaev J.I., Khalkhuzhaev A.M., Usmonov L.S., “Monotonicity of the eigenvalues of the two-particle Schrödinger operator a lattice”, Nanosystems Phys. Chemistry Math., 12:6 (2021), 657-663 | DOI

[5] Abdullaev Zh.I., Khalkhuzhaev A.M., Rasulov T.Kh., “Invariantnye podprostranstva i sobstvennye znacheniya trekhchastichnogo diskretnogo operatora Shredingera”, Izv. vuzov. Matem., 2023, no. 9, 3–19 | Zbl

[6] Bakhronov B.I., Rasulov T.Kh., Rekhman M., “Usloviya suschestvovaniya sobstvennykh znachenii trekhchastichnogo reshetchatogo modelnogo gamiltoniana”, Izv. vuzov. Matem., 2023, no. 7, 3–12

[7] Faddeev L.D., Merkuriev S.P., Quantum Scattering Theory for Several Particle Systems, Kluwer Academic Publ., 1993 | MR | Zbl

[8] Mogilner A.I., “Hamiltonians in solid state physics as multiparticle discrete Schrödinger operators: problems and result, Many Particle Hamiltonians: Spectra and Scattering”, Adv. Soviet Math., 5 (1991), 139-194 | MR | Zbl

[9] Mamatov Sh.S., Minlos R.A., “Svyazannye sostoyaniya dvukhchastichnogo klasternogo operatora”, Teor. i matem. fiz., 79:2 (1989), 163-179 | MR

[10] Minlos R.A., Mogilner A.I., “Some Problems Concerning Spectra of Lattice Models”, Schrödinger Operators, Standard and Nonstandard, Proc. Conf. (Dubna, USSR, 6–10 September), eds. P. Exner and P. Seba, World Sci., Singapore, 1989, 243–257 | MR

[11] Abdullaev Zh.I., Khalkhuzhaev A.M., Khuzhamierov I.A., “Uslovie suschestvovaniya sobstvennogo znacheniya trekhchastichnogo operatora Shredingera na reshetke”, Izv. vuzov. Matem., 2023, no. 2, 3-25 | Zbl

[12] Rasulov T.Kh., Mukhitdinov R.T., “Konechnost diskretnogo spektra modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Izv. vuzov. Matem., 2014, no. 1, 61-70 | Zbl

[13] Rasulov T.Kh., “Uravnenie Faddeeva i mestopolozhenie suschestvennogo spektra modelnogo operatora neskolkikh chastits”, Izv. vuzov. Matem., 2008, no. 12, 59–69 | Zbl

[14] Lakaev S.N., Khalkhuzhaev A.M., “O spektre dvukhchastichnogo operatora Shredingera na reshetke”, Teor. i matem. fiz., 155:2 (2008), 287–300 | DOI | MR | Zbl

[15] Abdullaev Zh.I., Mamirov B.U., “Asimptotika sobstvennykh znachenii dvukhchastichnogo diskretnogo operatora Shredingera”, Teor. i matem. fiz., 176:3 (2013), 417–428 | DOI | Zbl