The second-kind involutions of upper triangular matrix algebras
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 105-110
Cet article a éte moissonné depuis la source Math-Net.Ru
We provide a criterion for the equivalency of the second-kind involutions of upper triangular matrix algebras over commutative rings. For an algebra $T_{n}(F)$ of upper triangular matrices over a field $F$ it is proven that two involutions are equivalent if and only if they coincide after restriction to $F$.
Keywords:
upper triangular matrix algebra, involution, equivalency of involutions.
@article{IVM_2024_11_a9,
author = {D. T. Tapkin},
title = {The second-kind involutions of upper triangular matrix algebras},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {105--110},
year = {2024},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a9/}
}
D. T. Tapkin. The second-kind involutions of upper triangular matrix algebras. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 105-110. http://geodesic.mathdoc.fr/item/IVM_2024_11_a9/
[1] Albert A.A Ivanov I.I., Structure of algebras, Amer. Math. Soc. Colloquium Publ., 24, AMS, Providence, R.I., 1961 | MR
[2] Vincenzo O.M., Koshlukov P., Scala R., “Involutions for upper triangular matrix algebras”, Adv. Appl. Math., 37:4 (2006), 541–568 | DOI | MR | Zbl
[3] Kulguskin I.A., Tapkin D.T., “Involyutsii v algebrakh verkhnetreugolnykh matrits”, Izv. vuzov. Matem., 2023, no. 6, 11–30 | MR | Zbl
[4] Urure R.I.Q., Silva D.C., “Involutions of the second kind for upper triangular matrix algebras”, Commun. Algebra, 51:6 (2023), 2326–2333 | DOI | MR | Zbl
[5] Kezlan T.P., “A note on algebra automorphisms of triangular matrices over commutative rings”, Linear Algebra Appl., 135 (1990), 181–184 | DOI | MR | Zbl