@article{IVM_2024_11_a8,
author = {N. N. Romanovskii},
title = {Generalizations of {Sobolev} classes to the metric and topological cases},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {97--104},
year = {2024},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a8/}
}
N. N. Romanovskii. Generalizations of Sobolev classes to the metric and topological cases. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 97-104. http://geodesic.mathdoc.fr/item/IVM_2024_11_a8/
[1] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR
[2] Maz'ya V., Sobolev Spaces: with Applications to Elliptic Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl
[3] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR
[4] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR
[5] Maz'ya V., Isakov V., Sobolev Spaces in Mathematics $1, 2$ and $3$, Springer, New York, 2009 | MR
[6] Heinonen J., Koskela P., Shanmugalingam N., Tyson J.T., Sobolev spaces on metric measure spaces. An approach based on upper gradients, Cambridge Univ. Press, 2015 | MR | Zbl
[7] Bojarski B., “Pointwise characterization of Sobolev classes”, Tr. MIAN, 255, 2006, 71–87 | MR | Zbl
[8] Hajłasz P., “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | DOI | MR | Zbl
[9] Franchi B., Hajłasz P., Koskela P., “Definitions of Sobolev classes on metric spaces”, Ann. Inst. Fourier (Grenoble), 49:6 (1999), 1903–1924 | DOI | MR | Zbl
[10] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer, Berlin, 2007 | MR | Zbl
[11] Reshetnyak Yu.G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve”, Sib. matem. zhurn., 38:3 (1997), 657–675 | MR | Zbl
[12] Medzhidov Z.G., “Otsenki v $L^2$ i teoremy suschestvovaniya dlya obobschennykh analiticheskikh funktsii mnogikh peremennykh”, Sib. matem. zhurn., 45:4 (2004), 843–854 | MR | Zbl
[13] Reshetnyak Yu.G., “K teorii sobolevskikh klassov funktsii so znacheniyami v metricheskom prostranstve”, Sib. matem. zhurn., 47:1 (2006), 146–168 | MR | Zbl
[14] Vodopyanov S.K., Romanovskii N.N., “Klassy otobrazhenii Soboleva na prostranstvakh Karno–Karateodori. Razlichnye normirovki i variatsionnye zadachi”, Sib. matem. zhurn., 49:5 (2008), 1028–1045 | MR | Zbl
[15] Barlow M.T., Diffusions on fractals. Lectures on probability theory and statistics, Lect. Notes Math., 1690, Springer, Berlin, 1998 | DOI | MR
[16] Lott J., Villani C., “Ricci curvature for metric-measure spaces via optimal transport”, Ann. Math., 169:3 (2009), 903–991 | DOI | MR | Zbl
[17] Ambrosio L., Gigli N., Savare G., Gradient flows in metric spaces and in the space of probability measures, Lect. Math. ETH Zürich, 2nd edition, Birkhauser Verlag, Basel, 2007 | MR
[18] Villani C., Optimal transport. Old and new, Grundlehren der Math. Wissenschaften, 338, Springer-Verlag, Berlin–Heidelberg, 2009 | DOI | MR | Zbl
[19] Romanovskii N.N., “Klassy Soboleva na proizvolnom metricheskom prostranstve s meroi. Kompaktnost operatorov vlozheniya”, Sib. matem. zhurn., 54:2 (2013), 450–467 | MR | Zbl
[20] Romanovskii N.N., “Teoremy vlozheniya i variatsionnaya zadacha dlya funktsii, zadannykh na proizvolnom metricheskom prostranstve s meroi”, Sib. matem. zhurn., 55:3 (2014), 627–649 | MR | Zbl
[21] Romanovskii N.N., “Teoremy vlozheniya Soboleva i nekotorye ikh obobscheniya dlya funktsii, zadannykh na metricheskom prostranstve s meroi”, Sib. matem. zhurn., 59:1 (2018), 158–170 | MR | Zbl
[22] Romanovskii N.N., “Teoremy vlozheniya Soboleva i nekotorye ikh obobscheniya dlya otobrazhenii, zadannykh na topologicheskom prostranstve s meroi”, Vestn. Moskovsk. un-ta. Ser. 1. Matem. Mekhan., 2022, no. 1, 25–37 | Zbl
[23] Brudnyi Yu.A., “Kriterii suschestvovaniya proizvodnykh v $L_p$”, Matem. sb., 73:115 (1967), 42–64 | Zbl