Generalizations of Sobolev classes to the metric and topological cases
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 97-104 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper proposes an approach that makes it possible to describe in the same way classical Sobolev spaces, various generalizations of classical Sobolev spaces for functions defined on a metric or topological space and for functions with values in a metric or topological space, as well as spaces of functions that satisfy certain differential relations.
Keywords: Sobolev class, metric space, topological space.
@article{IVM_2024_11_a8,
     author = {N. N. Romanovskii},
     title = {Generalizations of {Sobolev} classes to the metric and topological cases},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {97--104},
     year = {2024},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a8/}
}
TY  - JOUR
AU  - N. N. Romanovskii
TI  - Generalizations of Sobolev classes to the metric and topological cases
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 97
EP  - 104
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_11_a8/
LA  - ru
ID  - IVM_2024_11_a8
ER  - 
%0 Journal Article
%A N. N. Romanovskii
%T Generalizations of Sobolev classes to the metric and topological cases
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 97-104
%N 11
%U http://geodesic.mathdoc.fr/item/IVM_2024_11_a8/
%G ru
%F IVM_2024_11_a8
N. N. Romanovskii. Generalizations of Sobolev classes to the metric and topological cases. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 97-104. http://geodesic.mathdoc.fr/item/IVM_2024_11_a8/

[1] Sobolev S.L., Nekotorye primeneniya funktsionalnogo analiza v matematicheskoi fizike, Nauka, M., 1988 | MR

[2] Maz'ya V., Sobolev Spaces: with Applications to Elliptic Partial Differential Equations, Springer-Verlag, Berlin–Heidelberg, 2011 | MR | Zbl

[3] Nikolskii S.M., Priblizhenie funktsii mnogikh peremennykh i teoremy vlozheniya, Nauka, M., 1977 | MR

[4] Besov O.V., Ilin V.P., Nikolskii S.M., Integralnye predstavleniya funktsii i teoremy vlozheniya, Nauka, M., 1996 | MR

[5] Maz'ya V., Isakov V., Sobolev Spaces in Mathematics $1, 2$ and $3$, Springer, New York, 2009 | MR

[6] Heinonen J., Koskela P., Shanmugalingam N., Tyson J.T., Sobolev spaces on metric measure spaces. An approach based on upper gradients, Cambridge Univ. Press, 2015 | MR | Zbl

[7] Bojarski B., “Pointwise characterization of Sobolev classes”, Tr. MIAN, 255, 2006, 71–87 | MR | Zbl

[8] Hajłasz P., “Sobolev spaces on an arbitrary metric space”, Potential Anal., 5:4 (1996), 403–415 | DOI | MR | Zbl

[9] Franchi B., Hajłasz P., Koskela P., “Definitions of Sobolev classes on metric spaces”, Ann. Inst. Fourier (Grenoble), 49:6 (1999), 1903–1924 | DOI | MR | Zbl

[10] Bonfiglioli A., Lanconelli E., Uguzzoni F., Stratified Lie groups and potential theory for their sub-Laplacians, Springer, Berlin, 2007 | MR | Zbl

[11] Reshetnyak Yu.G., “Sobolevskie klassy funktsii so znacheniyami v metricheskom prostranstve”, Sib. matem. zhurn., 38:3 (1997), 657–675 | MR | Zbl

[12] Medzhidov Z.G., “Otsenki v $L^2$ i teoremy suschestvovaniya dlya obobschennykh analiticheskikh funktsii mnogikh peremennykh”, Sib. matem. zhurn., 45:4 (2004), 843–854 | MR | Zbl

[13] Reshetnyak Yu.G., “K teorii sobolevskikh klassov funktsii so znacheniyami v metricheskom prostranstve”, Sib. matem. zhurn., 47:1 (2006), 146–168 | MR | Zbl

[14] Vodopyanov S.K., Romanovskii N.N., “Klassy otobrazhenii Soboleva na prostranstvakh Karno–Karateodori. Razlichnye normirovki i variatsionnye zadachi”, Sib. matem. zhurn., 49:5 (2008), 1028–1045 | MR | Zbl

[15] Barlow M.T., Diffusions on fractals. Lectures on probability theory and statistics, Lect. Notes Math., 1690, Springer, Berlin, 1998 | DOI | MR

[16] Lott J., Villani C., “Ricci curvature for metric-measure spaces via optimal transport”, Ann. Math., 169:3 (2009), 903–991 | DOI | MR | Zbl

[17] Ambrosio L., Gigli N., Savare G., Gradient flows in metric spaces and in the space of probability measures, Lect. Math. ETH Zürich, 2nd edition, Birkhauser Verlag, Basel, 2007 | MR

[18] Villani C., Optimal transport. Old and new, Grundlehren der Math. Wissenschaften, 338, Springer-Verlag, Berlin–Heidelberg, 2009 | DOI | MR | Zbl

[19] Romanovskii N.N., “Klassy Soboleva na proizvolnom metricheskom prostranstve s meroi. Kompaktnost operatorov vlozheniya”, Sib. matem. zhurn., 54:2 (2013), 450–467 | MR | Zbl

[20] Romanovskii N.N., “Teoremy vlozheniya i variatsionnaya zadacha dlya funktsii, zadannykh na proizvolnom metricheskom prostranstve s meroi”, Sib. matem. zhurn., 55:3 (2014), 627–649 | MR | Zbl

[21] Romanovskii N.N., “Teoremy vlozheniya Soboleva i nekotorye ikh obobscheniya dlya funktsii, zadannykh na metricheskom prostranstve s meroi”, Sib. matem. zhurn., 59:1 (2018), 158–170 | MR | Zbl

[22] Romanovskii N.N., “Teoremy vlozheniya Soboleva i nekotorye ikh obobscheniya dlya otobrazhenii, zadannykh na topologicheskom prostranstve s meroi”, Vestn. Moskovsk. un-ta. Ser. 1. Matem. Mekhan., 2022, no. 1, 25–37 | Zbl

[23] Brudnyi Yu.A., “Kriterii suschestvovaniya proizvodnykh v $L_p$”, Matem. sb., 73:115 (1967), 42–64 | Zbl