Two variants of stating problems of mechanics of a rod-strip with a section of one-sided fixing of finite length on a rigid support element
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 88-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The equivalence of two variants of problem formulation for rod-strip mechanics connected to a rigid and fixed support element on a finite-size section of one of its face surfaces is proved. The first of them is based on the use of a transformation model of rod deformation based on the transformation of the relations of the simplest Timoshenko shear model by preliminary satisfying the conditions of kinematic conjugation of the rod with the support element on the fastening section with the subsequent formulation of the kinematic and force conditions of conjugation of the fixed section of the rod with the unfastened one. The second variant, corresponding to the contact formulation of the problem, is based on the use of uniform relations of the refined theory of the Timoshenko type for the entire rod (for the fixed and unfastened sections), containing an unknown tangential contact stress at the points of the surface of the connection of the rod with the support element on the fixed section, which is included in the equations as an external load. To determine this, the conditions of kinematic conjugation of the rod with the support element are used.
Keywords: rod-strip, fixed section, unfixed section, Timoshenko model, transformation model of deformation, contact formulation of the problem
Mots-clés : equivalence.
@article{IVM_2024_11_a7,
     author = {V. N. Paimushin},
     title = {Two variants of stating problems of mechanics of a rod-strip with a section of one-sided fixing of finite length on a rigid support element},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {88--96},
     year = {2024},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a7/}
}
TY  - JOUR
AU  - V. N. Paimushin
TI  - Two variants of stating problems of mechanics of a rod-strip with a section of one-sided fixing of finite length on a rigid support element
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 88
EP  - 96
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_11_a7/
LA  - ru
ID  - IVM_2024_11_a7
ER  - 
%0 Journal Article
%A V. N. Paimushin
%T Two variants of stating problems of mechanics of a rod-strip with a section of one-sided fixing of finite length on a rigid support element
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 88-96
%N 11
%U http://geodesic.mathdoc.fr/item/IVM_2024_11_a7/
%G ru
%F IVM_2024_11_a7
V. N. Paimushin. Two variants of stating problems of mechanics of a rod-strip with a section of one-sided fixing of finite length on a rigid support element. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 88-96. http://geodesic.mathdoc.fr/item/IVM_2024_11_a7/

[1] Algazin S.D., Selivanov I.A., “Zadacha o sobstvennykh kolebaniyakh pryamougolnoi plastiny so smeshannymi kraevymi usloviyami”, Prikl. mekhan. Tekhn. fiz., 62:2 (366) (2021), 70–76 | Zbl

[2] Algarai A.F.A., Dzhun Kh., Makhdi I.E.M., “Vliyanie kraevykh uslovii na bezrazmernye sobstvennye chastoty perekrestno armirovannoi sloistoi kompozitnoi balki”, Prikl. mekhan. Tekhn. fiz., 58:6 (346) (2017), 177–185

[3] Krylova E.Yu., Papkova I.V., Erofeev N.P., Zakharov V.M., Krysko V.A., “Slozhnye kolebaniya gibkikh plastin pod deistviem prodolnykh nagruzok s uchetom belogo shuma”, Prikl. mekhan. Tekhn. fiz., 57:4 (338) (2016), 163–169 | Zbl

[4] Tüfekci M., Dear J.P., Salles L., “Forced vibration analysis of beams with frictional clamps”, Appl. Math. Model., 128 (2024), 450–469 | DOI | MR

[5] Banks H.T., Inman D.J., “On damping mechanisms in beams”, J. Appl. Mech., 58:3 (1991), 716–723 | DOI | MR | Zbl

[6] Asadi K., Ahmadian H., Jalali H., “Micro/macro-slip damping in beams with frictional contact interface”, J. Sound Vibrat., 331:21 (2012), 4704–4712 | DOI

[7] Ferri A.A., Bindemann A.C., “Damping and vibrations of beams with various types of frictional support conditions”, J. Vib. Acoust., 114:3 (1992), 289–296 | DOI

[8] Paimushin V.N., “Ploskie zadachi mekhaniki pryamykh sterzhnei s uchetom deformiruemosti uchastkov zakrepleniya, imeyuschikh konechnuyu dlinu”, Izv. vuzov. Matem., 2022, no. 3, 89–96 | DOI | MR | Zbl

[9] Paimushin V.N., Shishkin V.M., “Deformirovanie tonkostennykh elementov konstruktsii, na granichnykh litsevykh poverkhnostyakh kotorykh imeyutsya zakreplennye uchastki”, Prikl. mekhan. Tekhn. fiz., 64:2 (378) (2023), 155–173 | DOI | Zbl

[10] Paimushin V.N., Shishkin V.M., “Utochnennaya model dinamicheskogo deformirovaniya sterzhnya-polosy s zakreplennym uchastkom konechnoi dliny na odnoi iz litsevykh poverkhnostei”, Prikl. mekhan. Tekhn. fiz., 65:1 (383) (2024), 181–197 | MR

[11] Paimushin V.N., Firsov V.A., Shishkin V.M., Gazizullin R.K., “Transformational deformation models of continuous thin-walled structural elements with support elements of finite sizes: Theoretical foundations, computational, and physical experiments”, J. Appl. Math. Mechan., 104:2 (2023), e202300214 | DOI | MR

[12] Paimushin V.N., “K variatsionnym metodam resheniya nelineinykh prostranstvennykh zadach sopryazheniya deformiruemykh tel”, Dokl. AN SSSR, 273:5 (1983), 1083–1086 | MR | Zbl

[13] Paimushin V.N., Shishkin V.M., Gazizullin R.K., Nuriev A.N., “Issledovanie prokhozhdeniya vibratsii cherez zakreplennyi uchastok udlinennoi plastiny pri deistvii osevoi sily na tortse”, Probl. prochnosti i plastichnosti, 85:3 (2023), 356–374 | DOI

[14] Dautov R.Z., Paimushin V.N., “O metode integriruyuschikh matrits resheniya kraevykh zadach dlya obyknovennykh uravnenii chetvertogo poryadka”, Izv. vuzov. Matem., 1996, no. 10, 13–25 | Zbl