Jordan test for the Haar-type systems
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 61-80 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider Haar-type systems, which are generated by a (generally speaking, unbounded) sequence $ \{ p_n \}_{n=1}^\infty $, and which are defined on the modified segment $ [0, 1]^* $, i. e., on the segment $[0, 1]$ whose $ \{ p_n \}$-rational points are calculated two times. The main result of this work is a Jordan-type test for the pointwise and uniform convergence of Fourier series with respect to Haar-type systems. It is shown that the test obtained in the paper can not be improved. An example of a function of bounded variation, whose Fourier series with respect to Haar-type system diverges at some point, is constructed in the case of $ \sup\limits_n p_n = \infty$. Thus for any unbounded sequence $ \{ p_n \}_{n=1}^\infty $ there exists a monotone function whose Fourier series with respect to Haar-type system, generated by the given sequence $ \{ p_n \}_{n=1}^\infty $, diverges at some point. It is found that the Jordan test of convergence of Fourier series with respect to Haar-type systems does not differ from the Dini–Lipschitz condition for those systems. As the Dini–Lipschitz condition was considered earlier, the main value of this work is the construction of a corresponding counterexample, i. e., the construction of an example (a model) of a function of bounded variation whose Fourier series with respect to Haar-type Systems diverges at some point. In the counterexamples from the earlier works on the Dini–Lipschitz criterion (as well as for all Dini convergence criteria), the functions were not of bounded variation. The article's conclusion discusses how the Jordan convergence criterion evolved when transitioning from trigonometric systems of functions to Price systems (and to N.Ya. Vilenkin systems), and from there to generalized Haar systems and Haar-type systems.
Keywords: abelian group, modified segment $[0, continuity on the modified segment $[0, system of characters, Price system, Haar-type system, Dirichlet kernel, variation of function.
Mots-clés : 1]$, 1]$
Mots-clés : Jordan test
@article{IVM_2024_11_a5,
     author = {V. I. Shcherbakov},
     title = {Jordan test for the {Haar-type} systems},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--80},
     year = {2024},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a5/}
}
TY  - JOUR
AU  - V. I. Shcherbakov
TI  - Jordan test for the Haar-type systems
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 61
EP  - 80
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_11_a5/
LA  - ru
ID  - IVM_2024_11_a5
ER  - 
%0 Journal Article
%A V. I. Shcherbakov
%T Jordan test for the Haar-type systems
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 61-80
%N 11
%U http://geodesic.mathdoc.fr/item/IVM_2024_11_a5/
%G ru
%F IVM_2024_11_a5
V. I. Shcherbakov. Jordan test for the Haar-type systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 61-80. http://geodesic.mathdoc.fr/item/IVM_2024_11_a5/

[1] Vilenkin H.Ya., “Ob odnom klasse polnykh ortonormalnykh sistem”, Izv. AN SSSR. Ser. Matem., 11:4 (1947), 363–400 | Zbl

[2] Agaev G.N., Vilenkin N.Ya., Dzhafarli G.M., Rubinshtein A.I., Multiplikativnye sistemy funktsii i garmonicheskii analiz na nulmernykh gruppakh, ELM, Baku, 1981 | MR

[3] Kachmazh S., Shteingauz G., “Dopolneniya N.Ya. Vilenkina”, Teoriya ortogonalnykh ryadov, § 1, p. 6, Fizmatgiz, M., 1958, 475–479

[4] Golubov B.I., Rubinshtein A.I., “Ob odnom klasse sistem skhodimosti”, Matem. sb., 71 (113):1 (1966), 96–115 | Zbl

[5] Lukomskii S.F., “O ryadakh Khaara na kompaktnoi nulmernoi gruppe”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 9:1 (2009), 24–29

[6] Golubov B.I., “Ob odnom klasse polnykh ortogonalnykh sistem”, Sib. matem. zhurn., 9:2 (1968), 297–314 | MR | Zbl

[7] Scherbakov V.I., “Raskhodimost ryadov Fure po obobschennym sistemam Khaara v tochkakh nepreryvnosti funktsii”, Izv. vuzov. Matem., 2016, no. 1, 49–68

[8] Scherbakov V.I., “Priznak Dini–Lipshitsa dlya obobschennykh sistem Khaara”, Izv. Saratovsk. un-ta, Ser. Matem. Mekhan. Informatika, 16:4 (2016), 435–448 | MR

[9] Bari N.K., Trigonometricheskie ryady, Fizmatgiz, M., 1961

[10] Zigmund A., Trigonometricheskie ryady, v. 1, Mir, M., 1965

[11] Scherbakov V.I., “O potochechnoi skhodimosti ryadov Fure po multiplikativnym sistemam”, Vestn. Moskovsk. un-ta. Ser. 1. Matem., mekhan., 1983, no. 2, 37–42

[12] Onneweer C.W., Waterman D., “Uniform convergence of Fourier Series on groups. I”, Michigan Math. J., 18:3 (1971), 265–273 | DOI | MR | Zbl

[13] Scherbakov V.I., “Priznak Dini–Lipshitsa i skhodimost ryadov Fure po multiplikativnym sistemam”, Anal. Math., 10:1 (1984), 133–150 | DOI

[14] Price J.J., “Certain groups of orthonormal step functions”, Canadian J. Math., 9:3 (1957), 417–425 | MR

[15] Chrestenson H.E., “A class of generalized Walsh functions”, Pacific J. Math., 5:1 (1955), 17–31 | DOI | MR | Zbl

[16] Walsh J.L., “A closed set of normal orthogonal functions”, Amer. J. Math., 45:1 (1923), 5–24 | DOI | MR

[17] Paley R.E.A.C., “A remarkable series of orthogonal functions (I)”, Proc. London Math. Soc., 34:1 (1932), 241–264 | DOI | MR | Zbl

[18] Rademacher H., “Einige Sätze über Reihen von allgemeinen Orthogonalfunctionen”, Math. Ann., 87:1–2 (1922), 112–138 | DOI | MR

[19] Kaczmashz S., Steinhaus H., Theorie der Orthogonalreichen, Warszava–Wroclav, 1936

[20] Haar A., “Zur Theorie der Orthogonalischen Functionensysteme”, Math. Ann., 69:3 (1910), 331–371 | DOI | MR

[21] Scherbakov V.I., “Mazhoranty yader Dirikhle i potochechnye priznaki Dini dlya obobschennykh sistem Khaara”, Matem. zametki, 101:3 (2017), 446–473 | DOI | MR

[22] Shcherbakov V.I., “A test of convergence of Fourier series with respect to multiplicative systems, analogous to the Jordan test”, Anal. Math., 15:1 (1989), 37–54 | DOI | MR | Zbl

[23] Mirmukhamedov S.M., O skhodimosti ryadov Fure po multiplikativnym sistemam i sistemam tipa Khaara, MGU, M., 1988

[24] Mirmukhamedov S.M., “O ravnomernoi skhodimosti ryadov po multiplikativnym sistemam”, Vestn. Moskovsk. un-ta. Ser. 1. Matem., mekhan., 1988, no. 5, 55–59 | MR

[25] Mirmukhamedov S.M., “O priznake tipa Salema dlya perestavlennykh multiplikativnykh sistem”, DAN Tadzhiksk. SSR, 31:7 (1988), 436–441 | MR | Zbl

[26] Monna F., Analyse non-archimédienne, Springer–Veilag, Berlin–New-York, 1970 | MR

[27] Khrennikov A.Yu., Shelkovich V.M., Sovremennyi $p$-adicheskii analiz i matematicheskaya fizika. Teoriya i prilozheniya, Fizmatgiz, M., 2012

[28] Faber G., “Úber die Orthogonalfunctionen des Herr Haar”, Jahresber. Deutsch. Math.-Verein., 19 (1910), 104–112

[29] Aleksich G., Problemy skhodimosti ortogonalnykh ryadov, In. lit., M., 1963

[30] Ulyanov P.L., “O ryadakh po sisteme Khaara”, Matem. sb., 63 (105):3 (1964), 356–391 | Zbl

[31] Scherbakov V.I., “O priznake Zhordana ili vo chto on perekhodit na obobschennykh sistemakh Khaara”, Mater. 12-oi mezhdunarodn. Kazanskoi letnei nauchnoi shkoly-konferentsii, Trudy matematicheskogo tsentra imeni N. I. Lobachevskogo, 51, Izd-vo Kazansk. matem. ob-va, 2015, 493–496

[32] Scherbakov V.I., “O priznake Zhordana dlya obobschennykh sistem Khaara”, Sovremennye metody teorii funktsii i smezhnye problemy, Mater. Mezhdunarodn. konferentsii “Voronezhskaya Zimnyaya matematicheskaya shkola” (28 yanvarya – 2 fevralya, 2019), VGU, Voronezh, 2019, 299–301