Keywords: Visser's inequality, inequality in the complex domain.
@article{IVM_2024_11_a4,
author = {M. Shafi and N. A. Rather and S. Gulzar},
title = {A note on {Visser's} inequality},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {51--60},
year = {2024},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a4/}
}
M. Shafi; N. A. Rather; S. Gulzar. A note on Visser's inequality. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 51-60. http://geodesic.mathdoc.fr/item/IVM_2024_11_a4/
[1] Mahler K., “An application of Jensen's formula to polynomials”, J. Math., 7:2 (1960), 98–100 | MR | Zbl
[2] Visser C., “A simple proof of certain inequalities concerning polynomials”, Koninkl. Nederl. Akad. Wetensch. Proc., 47 (1945), 276–281 | MR
[3] Gulzar S., “On estimates for the coefficients of a polynomial”, Comp. Rend. Math., 354:4 (2016), 357–363 | DOI | MR | Zbl
[4] Gulzar S., Rather N.A., “$L_p$ inequalities for the Schur–Szegö composition of polynomials”, Acta Math. Hung., 151:1 (2017), 124–138 | DOI | MR | Zbl
[5] Gulzar S., “Some Zygmund type inequalities for the $s$-th derivative of polynomials”, Anal. Math., 42 (2016), 339–352 | DOI | MR | Zbl
[6] Gulzar S., Razer N.A., Vani M.Sh., “O neravenstve Vissera, svyazannom s otsenkoi koeffitsientov polinomov”, Izv. vuzov. Matem., 2022, no. 3, 13–20 | Zbl
[7] Jain V.K., “Visser's inequality and its sharp refinement”, Bull. Math. Soc. Sci. Math. Roum. Tome, 49 (97):2 (2006), 171–175 | MR | Zbl
[8] Rahman Q.I., Schmeisser G., “$L_p$ inequalities for polynomial”, J. Approx. Theory, 53 (1988), 26–32 | DOI | MR | Zbl
[9] Arestov V.V., “Ob integralnykh neravenstvakh dlya trigonometricheskikh polinomov i ikh proizvodnykh”, Izv. AN SSSR. Ser. Matem., 45:1 (1981), 3–22
[10] Arestov V.V., “Integralnye neravenstva dlya algebraicheskikh mnogochlenov na edinichnoi okruzhnosti”, Matem. zametki, 48:4 (1990), 7–18 | MR
[11] Pólya G., Szegö G., Problems and Theorem in Analysis I, Springer-Verlag, Berlin, 1978 | MR
[12] Rahman Q.I., Schmeisser G., Analytic Theory of Polynomials, Oxford Univ. Press, New York, 2002 | MR | Zbl