Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 35-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the properties of systems $\Phi_1$ orthogonal with respect to a weighted discrete-continuous Sobolev inner product of the form $\langle f,g \rangle_S = f(a)g(a)+f(b)g(b)+\displaystyle\int_a^b f'(t)g'(t)w(t)dt$. The completeness of systems $\Phi_1$ in the Sobolev space $W^1_{L^2_w}$ and the relation of $\Phi_1$ to systems orthogonal in weighted Lebesgue spaces $L^2_u$ are studied. We also analyze properties of the Fourier series with respect to systems $\Phi_1$. In particular, conditions for the uniform convergence of Fourier series to functions from $W^1_{L^2}$ are obtained.
Keywords: discrete-continuous inner product, Sobolev inner product, Fourier series, coincidence at the ends of the segment, completeness of Sobolev systems.
Mots-clés : uniform convergence
@article{IVM_2024_11_a3,
     author = {M. G. Magomed-Kasumov},
     title = {Weighted {Sobolev} orthogonal systems with two discrete points and {Fourier} series with respect to them},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {35--50},
     year = {2024},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a3/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
TI  - Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 35
EP  - 50
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_11_a3/
LA  - ru
ID  - IVM_2024_11_a3
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%T Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 35-50
%N 11
%U http://geodesic.mathdoc.fr/item/IVM_2024_11_a3/
%G ru
%F IVM_2024_11_a3
M. G. Magomed-Kasumov. Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 35-50. http://geodesic.mathdoc.fr/item/IVM_2024_11_a3/

[1] Magomed-Kasumov M.G., “Sobolevskie sistemy, ortogonalnye otnositelno skalyarnogo proizvedeniya s dvumya diskretnymi tochkami, i ryady Fure po nim”, Izv. vuzov. Matem., 2021, no. 12, 56–66 | MR | Zbl

[2] Diaz-González A., Marcellán F., Pijeira-Cabrera H., “Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series”, Bull. Malays. Math. Sci. Soc., 44 (2020), 571–598 | DOI | MR

[3] Marcellán F., Xu Y., “On Sobolev orthogonal polynomials”, Expos. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl

[4] Marcellán F., Quintana Y., Urieles A., “On the Pollard decomposition method applied to some Jacobi-Sobolev expansions”, Turk. J. Math., 37:6 (2013), 934–948 | MR | Zbl

[5] Ciaurri O., Minguez J., “Fourier series of Jacobi-Sobolev polynomials”, Integral Transf. Spec. Funct., 30:4 (2019), 334–346 | DOI | MR | Zbl

[6] Ciaurri O., Minguez J., “Fourier series for coherent pairs of Jacobi measures”, Integral Transf. Spec. Funct., 32:5–8 (2021), 437–457 | DOI | MR | Zbl

[7] Fejzullahu B., “Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product”, J. Approx. Theory, 162:2 (2010), 397–406 | DOI | MR | Zbl

[8] Fejzullahu B., Marcellán F., Moreno-Balcázar J., “Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality”, J. Approx. Theory, 170 (2013), 78–93 | DOI | MR | Zbl

[9] Marcellán F., Osilenker B., Rocha I., “On Fourier Series of a Discrete Jacobi-Sobolev Inner Product”, J. Approx. Theory, 117:1 (2002), 1–22 | DOI | MR | Zbl

[10] Rocha I., Marcellan F., Salto L., “Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product”, J. Approx. Theory, 121:2 (2003), 336–356 | DOI | MR | Zbl

[11] Osilenker B.P., “Skhodimost i summiruemost ryadov Fure–Soboleva”, Vestn. MGSU, 2012, no. 5, 34–39 https://cyberleninka.ru/article/n/shodimost-i-summiruemost-ryadov-furie-soboleva-1

[12] Osilenker B.P., “O lineinykh metodakh summirovaniya ryadov Fure po mnogochlenam, ortogonalnym v diskretnykh prostranstvakh Soboleva”, Sib. matem. zhurn., 56:2 (2015), 420–435 | MR | Zbl

[13] Fejzullahu B., Marcellán F., “On convergence and divergence of Fourier expansions with respect to some Gegenbauer–Sobolev type inner product”, Commun. Anal. Theory Cont. Fract., 2009, no. 16, 1–11 | MR

[14] Ciaurri O., Minguez J., “Fourier series of Gegenbauer-Sobolev polynomials”, SIGMA Symm. Integrabi. Geom. Methods Appl., 2018, no. 14, 1–11 | MR

[15] Sharapudinov I.I., “Ortogonalnye po Sobolevu sistemy funktsii i nekotorye ikh prilozheniya”, UMN, 74:4 (448) (2019), 87–164 | DOI | MR | Zbl

[16] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | DOI | MR | Zbl

[17] Magomed-Kasumov M G., “Sistema funktsii, ortogonalnaya v smysle Soboleva i porozhdennaya sistemoi Uolsha”, Matem. zametki, 105:4 (2019), 545–552 | DOI | MR | Zbl

[18] Magomed-Kasumov M.G., “Otsenki skorosti skhodimosti ryadov Fure po ortogonalnoi v smysle Soboleva sisteme funktsii, porozhdennoi sistemoi Uolsha”, Mater. $20$ mezhdunarodn. Caratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, $28$ yanvarya – $1$ fevralya $2020$ g.), v. 2, Itogi nauki i tekhniki. Sovrem. matem. i ee prilozh. Temat. obz., 200, VINITI RAN, M., 2021, 73–80 | DOI | MR

[19] Gadzhimirzaev R.M., “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. anal. Issues Anal., 8 (26):1 (2019), 32–46 | DOI | MR | Zbl

[20] Gadzhimirzaev R.M., “O ravnomernoi skhodimosti ryada Fure po sisteme polinomov, porozhdennoi sistemoi polinomov Lagerra”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 20:4 (2020), 416–423 | MR | Zbl

[21] Sharapudinov I.I., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda, i zadacha Koshi dlya obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 54:12 (2018), 1645–1662 | DOI | Zbl

[22] Sharapudinov I.I., “Ortogonalnye po Sobolevu sistemy funktsii i zadacha Koshi dlya ODU”, Izv. RAN. Ser. Matem., 83:2 (2019), 204–226 | DOI | MR | Zbl

[23] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, $3$-e izd., FIZMATLIT, M., 2007

[24] Natanson I.P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR

[25] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Izd. $4$, Nauka, M., 1976 | MR

[26] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.