Mots-clés : uniform convergence
@article{IVM_2024_11_a3,
author = {M. G. Magomed-Kasumov},
title = {Weighted {Sobolev} orthogonal systems with two discrete points and {Fourier} series with respect to them},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {35--50},
year = {2024},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a3/}
}
TY - JOUR AU - M. G. Magomed-Kasumov TI - Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 35 EP - 50 IS - 11 UR - http://geodesic.mathdoc.fr/item/IVM_2024_11_a3/ LA - ru ID - IVM_2024_11_a3 ER -
M. G. Magomed-Kasumov. Weighted Sobolev orthogonal systems with two discrete points and Fourier series with respect to them. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 35-50. http://geodesic.mathdoc.fr/item/IVM_2024_11_a3/
[1] Magomed-Kasumov M.G., “Sobolevskie sistemy, ortogonalnye otnositelno skalyarnogo proizvedeniya s dvumya diskretnymi tochkami, i ryady Fure po nim”, Izv. vuzov. Matem., 2021, no. 12, 56–66 | MR | Zbl
[2] Diaz-González A., Marcellán F., Pijeira-Cabrera H., “Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series”, Bull. Malays. Math. Sci. Soc., 44 (2020), 571–598 | DOI | MR
[3] Marcellán F., Xu Y., “On Sobolev orthogonal polynomials”, Expos. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl
[4] Marcellán F., Quintana Y., Urieles A., “On the Pollard decomposition method applied to some Jacobi-Sobolev expansions”, Turk. J. Math., 37:6 (2013), 934–948 | MR | Zbl
[5] Ciaurri O., Minguez J., “Fourier series of Jacobi-Sobolev polynomials”, Integral Transf. Spec. Funct., 30:4 (2019), 334–346 | DOI | MR | Zbl
[6] Ciaurri O., Minguez J., “Fourier series for coherent pairs of Jacobi measures”, Integral Transf. Spec. Funct., 32:5–8 (2021), 437–457 | DOI | MR | Zbl
[7] Fejzullahu B., “Asymptotic properties and Fourier expansions of orthogonal polynomials with a non-discrete Gegenbauer-Sobolev inner product”, J. Approx. Theory, 162:2 (2010), 397–406 | DOI | MR | Zbl
[8] Fejzullahu B., Marcellán F., Moreno-Balcázar J., “Jacobi-Sobolev orthogonal polynomials: Asymptotics and a Cohen type inequality”, J. Approx. Theory, 170 (2013), 78–93 | DOI | MR | Zbl
[9] Marcellán F., Osilenker B., Rocha I., “On Fourier Series of a Discrete Jacobi-Sobolev Inner Product”, J. Approx. Theory, 117:1 (2002), 1–22 | DOI | MR | Zbl
[10] Rocha I., Marcellan F., Salto L., “Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product”, J. Approx. Theory, 121:2 (2003), 336–356 | DOI | MR | Zbl
[11] Osilenker B.P., “Skhodimost i summiruemost ryadov Fure–Soboleva”, Vestn. MGSU, 2012, no. 5, 34–39 https://cyberleninka.ru/article/n/shodimost-i-summiruemost-ryadov-furie-soboleva-1
[12] Osilenker B.P., “O lineinykh metodakh summirovaniya ryadov Fure po mnogochlenam, ortogonalnym v diskretnykh prostranstvakh Soboleva”, Sib. matem. zhurn., 56:2 (2015), 420–435 | MR | Zbl
[13] Fejzullahu B., Marcellán F., “On convergence and divergence of Fourier expansions with respect to some Gegenbauer–Sobolev type inner product”, Commun. Anal. Theory Cont. Fract., 2009, no. 16, 1–11 | MR
[14] Ciaurri O., Minguez J., “Fourier series of Gegenbauer-Sobolev polynomials”, SIGMA Symm. Integrabi. Geom. Methods Appl., 2018, no. 14, 1–11 | MR
[15] Sharapudinov I.I., “Ortogonalnye po Sobolevu sistemy funktsii i nekotorye ikh prilozheniya”, UMN, 74:4 (448) (2019), 87–164 | DOI | MR | Zbl
[16] Sharapudinov I.I., “Sistemy funktsii, ortogonalnye po Sobolevu, assotsiirovannye s ortogonalnoi sistemoi”, Izv. RAN. Ser. matem., 82:1 (2018), 225–258 | DOI | MR | Zbl
[17] Magomed-Kasumov M G., “Sistema funktsii, ortogonalnaya v smysle Soboleva i porozhdennaya sistemoi Uolsha”, Matem. zametki, 105:4 (2019), 545–552 | DOI | MR | Zbl
[18] Magomed-Kasumov M.G., “Otsenki skorosti skhodimosti ryadov Fure po ortogonalnoi v smysle Soboleva sisteme funktsii, porozhdennoi sistemoi Uolsha”, Mater. $20$ mezhdunarodn. Caratovskoi zimnei shkoly «Sovremennye problemy teorii funktsii i ikh prilozheniya» (Saratov, $28$ yanvarya – $1$ fevralya $2020$ g.), v. 2, Itogi nauki i tekhniki. Sovrem. matem. i ee prilozh. Temat. obz., 200, VINITI RAN, M., 2021, 73–80 | DOI | MR
[19] Gadzhimirzaev R.M., “Sobolev-orthonormal system of functions generated by the system of Laguerre functions”, Probl. anal. Issues Anal., 8 (26):1 (2019), 32–46 | DOI | MR | Zbl
[20] Gadzhimirzaev R.M., “O ravnomernoi skhodimosti ryada Fure po sisteme polinomov, porozhdennoi sistemoi polinomov Lagerra”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 20:4 (2020), 416–423 | MR | Zbl
[21] Sharapudinov I.I., “Polinomy, ortogonalnye po Sobolevu, assotsiirovannye s polinomami Chebysheva pervogo roda, i zadacha Koshi dlya obyknovennykh differentsialnykh uravnenii”, Differents. uravneniya, 54:12 (2018), 1645–1662 | DOI | Zbl
[22] Sharapudinov I.I., “Ortogonalnye po Sobolevu sistemy funktsii i zadacha Koshi dlya ODU”, Izv. RAN. Ser. Matem., 83:2 (2019), 204–226 | DOI | MR | Zbl
[23] Suetin P.K., Klassicheskie ortogonalnye mnogochleny, $3$-e izd., FIZMATLIT, M., 2007
[24] Natanson I.P., Konstruktivnaya teoriya funktsii, GITTL, M.–L., 1949 | MR
[25] Kolmogorov A.N., Fomin S.V., Elementy teorii funktsii i funktsionalnogo analiza, Izd. $4$, Nauka, M., 1976 | MR
[26] Sege G., Ortogonalnye mnogochleny, GIFML, M., 1962, 500 pp.