On the Ries inequality and the basicity of systems of root vector functions of $2m$th order Dirac-type operator with summable coefficient
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 23-34 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider a Dirac-type operator of $2m$th order on a finite interval $G=(a,b).$ It is assumed that its coefficient is a complex-valued matrix function summable on $G=(a,b)$. A Riesz property criterion is established for a system of root vector functions, and a theorem on the equivalent basis property in $L_{p}^{2m} (G), \ 1 is proved.
Keywords: operator of Dirac-type, root vector function, Riesz inequality, equivalent basis property.
@article{IVM_2024_11_a2,
     author = {E. J. Ibadov},
     title = {On the {Ries} inequality and the basicity of systems of root vector functions of $2m$th order {Dirac-type} operator with summable coefficient},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {23--34},
     year = {2024},
     number = {11},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a2/}
}
TY  - JOUR
AU  - E. J. Ibadov
TI  - On the Ries inequality and the basicity of systems of root vector functions of $2m$th order Dirac-type operator with summable coefficient
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 23
EP  - 34
IS  - 11
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_11_a2/
LA  - ru
ID  - IVM_2024_11_a2
ER  - 
%0 Journal Article
%A E. J. Ibadov
%T On the Ries inequality and the basicity of systems of root vector functions of $2m$th order Dirac-type operator with summable coefficient
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 23-34
%N 11
%U http://geodesic.mathdoc.fr/item/IVM_2024_11_a2/
%G ru
%F IVM_2024_11_a2
E. J. Ibadov. On the Ries inequality and the basicity of systems of root vector functions of $2m$th order Dirac-type operator with summable coefficient. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 23-34. http://geodesic.mathdoc.fr/item/IVM_2024_11_a2/

[1] Ilin V.A., “O bezuslovnoi bazisnosti na zamknutom intervale sistem sobstvennykh i prisoedinennykh funktsii differentsialnogo operatora vtorogo poryadka”, Dokl. AN SSSR, 273:5 (1983), 1048–1053 | MR | Zbl

[2] Kurbanov V.M., “O besselevosti i bezuslovnoi bazisnosti sistem kornevykh vektor-funktsii operatora Diraka”, Differents. uravneniya, 32:12 (1996), 1608–1617 | MR | Zbl

[3] Kurbanov V.M., Abdullayeva A.M., “Bessel property and basicity of the system of root vector-functions of Dirac operator with summable coefficient”, Operators and Matrices, 12:4 (2018), 943–954 | DOI | MR | Zbl

[4] Kurbanov V.M., Ismailova A.I., “Pokomponentnaya ravnomernaya ravnoskhodimost razlozhenii po kornevym vektor-funktsiyam operatora Diraka s trigonometricheskim razlozheniem”, Differents. uravneniya, 48:5 (2012), 648–662 | Zbl

[5] Kurbanov V.M., Ismailova A.I., “Absolyutnaya i ravnomernaya skhodimost razlozhenii po kornevym vektor-funktsiyam operatora Diraka”, Dokl. RAN, 446:4 (2012), 380–383 | Zbl

[6] Kurbanov V.M., Ismailova A.I., “Neravenstvo Rissa dlya sistem kornevykh vektor-funktsii operatora Diraka”, Differents. uravneniya, 48:3 (2012), 334–340 | Zbl

[7] Kurbanov V.M., Ibadov E.J., Hajiyeva G.R., “On Bessel property and unconditional basicity of the systems of root vector-functions of Dirac type operator”, Azer. J. Math., 7:2 (2017), 20–30 | MR

[8] Kurbanov V.M., Buksaeva L.Z., “O neravenstve Rissa i bazisnosti sistem kornevykh vektor-funktsii razryvnogo operatora Diraka”, Differents. uravneniya, 55:8 (2019), 1079–1089 | DOI | Zbl

[9] Ibadov E.Dzh., “O svoistvakh sistem kornevykh vektor-funktsii operatora tipa Diraka $2m$-go poryadka s summiruemym potentsialom”, Differents.uravneniya, 59:10 (2023), 1299–1317 | DOI | Zbl

[10] Trooshin I., Yamamota M., “Riesz basis of root vectors of a non-symmetric system of first-order ordinary differential operators and application to inverse eigenvalue problems”, Appl. Anal., 80:1 (2002), 19–51 | MR

[11] Djakov P., Mityagin B., “Bari-Markus property for Riesz projections of 1D periodic Dirac operators”, Math. Nachr., 283:3 (2010), 443–462 | DOI | MR | Zbl

[12] Djakov P., Mityagin B., “Unconditional convergence of spectral decompositions of 1D Dirac operators with regular boundary conditions”, Indiana Univ. Math. J., 61:1 (2012), 359–398 | DOI | MR | Zbl

[13] Djakov P., Mityagin B., “Criteria for existence of Riesz bases consisting of root functions of Hill and 1D Dirac operators”, J. Funct. Anal., 263:8 (2012), 2300–2332 | DOI | MR | Zbl

[14] Savchuk A.M., Shkalikov A.A., “The Dirac operator with complex-valued summable potential”, Math. Notes, 96:5 (2014), 777–810 | DOI | MR | Zbl

[15] Savchuk A.M., Sadovnichaya I.V., “Bazisnost Rissa so skobkami dlya sistemy Diraka s summiruemym potentsialom”, Sovr. matem. Fundament. napravleniya, 58, 2015, 128–152

[16] Lunyov A.A., Malamud M.M., “On the Riesz basis property of the root vector system for Dirac-type $2\times 2$ systems”, Dokl. Math., 90:2 (2014), 556–561 | DOI | MR | Zbl

[17] Lunyov A.A., Malamud M.M., “On the Riezs basis property of root vectors system for $2\times2$ Dirac-type operators”, J. Math. Anal. Appl., 441:1 (2016), 57–103 | DOI | MR | Zbl

[18] Makin A.S., “On convergence of spectral expansions of Dirac operators with regular boundary conditions”, Math. Nachr., 295:1 (2022), 189–210, arXiv: 1902.02952 | DOI | MR | Zbl

[19] Lunyov A.A., “Criterion of Bari basis property for $2\times 2$ Dirac-type operators with strictly regular boundary conditions”, Math. Nachr., 296:9 (2023), 4125–4151 | DOI | MR | Zbl

[20] Makin A.S., “O dvukhtochechnykh zadachakh dlya operatorov Shturma–Liuvillya i Diraka”, Itogi nauki i tekhn. Sovr. matem. i ee pril. Temat. obzory, 194, 2021, 144–154 | DOI

[21] Birkhoff G.D., Langer R.E., “The boundary problems and developments associated with a system of ordinary dfferential equations of the first order”, Proc. Amer. Acad. Arts Sci., 58:2 (1923), 51–128 | DOI | MR

[22] Kornev V.V., Khromov A.P., “Sistema Diraka s nedifferentsiruemym potentsialom i antiperiodicheskimi kraevymi usloviyami”, Izv. Saratovsk. un-ta. Ser. Matem. Mekhan. Informatika, 13:3 (2013), 28–35 | Zbl

[23] Marchenco V.A., Sturm–Liouville operators and applications Operator Theory., Adv. Appl., 22, Birkhauser Verlag, Basel, 1986 | MR

[24] Malamud M.M., Oridoroga L.L., “On the completeness of root subspaces of boundary value problems for first order systems of ordinary differential equations”, J. Funct. Anal., 263 (2012), 1939–1980 | DOI | MR | Zbl

[25] Mykytnyk Ya.V., Puyda D.V., “Bari–Markus property of Dirac operators”, Mat. Stud., 40:2 (2013), 165–171 | MR

[26] Lunyov A.A., Malamud M.M., “On the completeness and Riesz basis property of root subspaces of boundary value problems for first order systems and applications”, JST, 5:1 (2015), 17–70 | MR | Zbl

[27] Shkalikov A.A., “Regulyarnye spektralnye zadachi giperbolicheskogo tipa dlya sistemy obyknovennykh differentsialnykh uravnenii pervogo poryadka”, Matem. zametki, 110:5 (2021), 796–800 | DOI | MR | Zbl

[28] Lunyov A.A., Malamud M.M., “On transformation operators and Riesz basis property of root vectors system for $n\times n$ Dirac-type operators”, Appl. to the Timoshenko beam model, arXiv: 2112.07248

[29] Zigmund A., Trigonometricheskie ryady, v. 2, Mir, M., 1965