Mots-clés : isochronous center, isochronous focus
@article{IVM_2024_11_a0,
author = {V. V. Amel'kin and V. Yu. Tyshchenko},
title = {Isochronous centers and foci of two-dimensional holomorphic differential systems},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--11},
year = {2024},
number = {11},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_11_a0/}
}
TY - JOUR AU - V. V. Amel'kin AU - V. Yu. Tyshchenko TI - Isochronous centers and foci of two-dimensional holomorphic differential systems JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 3 EP - 11 IS - 11 UR - http://geodesic.mathdoc.fr/item/IVM_2024_11_a0/ LA - ru ID - IVM_2024_11_a0 ER -
V. V. Amel'kin; V. Yu. Tyshchenko. Isochronous centers and foci of two-dimensional holomorphic differential systems. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 11 (2024), pp. 3-11. http://geodesic.mathdoc.fr/item/IVM_2024_11_a0/
[1] Algaba A., Reyes M., “Characterizing isochronous points and computing isochronous sections”, J. Math. Anal. Appl., 355:2 (2009), 564–576 | DOI | MR | Zbl
[2] Amelkin V.V., Lukashevich N.A., Sadovskii A.P., Nelineinye kolebaniya v sistemakh vtorogo poryadka, BGU, Minsk, 1982
[3] Van D., Li Ch., Chou Sh.-N., Normalnye formy i bifurkatsii vektornykh polei na ploskosti, MTsNMO, M., 2005
[4] Bryuno A.D., “Analiticheskaya forma differentsialnykh uravnenii”, Tr. Moskovsk. matem. ob-va, 25, 1971, 119–262 | Zbl
[5] Tokarev S.P., “Gladkaya ekvivalentnost sistem differentsialnykh uravnenii na ploskosti v sluchae fokusa”, Differents. uravneniya, 13:5 (1977), 892–897 | MR | Zbl
[6] Abdullaev N., “Ob izokhronnosti pri nelineinykh kolebaniyakh”, Tr. Tadzhiks. uchitelsk. in-ta im. S.S. Aini, 2 (1954), 71–78
[7] Volokitin E.P., Ivanov B.B., “Izokhronnost i kommutiruemost polinomialnykh vektornykh polei”, Sib. matem. zhurn., 40:1 (1999), 30–48 | MR | Zbl
[8] Ladis N.N., “Kommutiruyuschie vektornye polya i izokhronnost”, Vestn. Belorussk. gos. un-ta. Ser. 1, 1976, no. 1, 21–24 | MR
[9] Villarini M., “Regularity properties of the period function near a center of a planar vector field”, Nonlinear Anal., 8 (1992), 787–803 | DOI | MR | Zbl
[10] Sabatini M., “Characterizing isochronous centers by Lie brackets”, Diff. Equat. Dynam. Syst., 5:1 (1997), 91–99 | MR | Zbl
[11] Llibre J., Ramirez R., Ramirez V., Sadovskaia N., “Centers and uniform isochronous centers of planar polynomial differential systems”, J. Dyn. Diff. Equat., 30:3 (2018), 1295–1310 | DOI | MR | Zbl
[12] Algaba A., Freire E., Gamero E., “Isochronicity via normal form”, Qual. Theory Dynam. Syst., 1:5 (2000), 133–156 | DOI | MR | Zbl
[13] Giné J., “Isochronous foci for analytic differential systems”, Int. J. Bifurcation Chaos., 13:6 (2003), 1617–1623 | DOI | MR | Zbl
[14] Giné J., Grau M., “Characterization of isochronous foci for planar analytic differential systems”, Proc. Royal Soc. Edinburgh. Sect. A.: Math., 135:5 (2005), 985–998 | DOI | MR | Zbl
[15] Arnold V.I., Dopolnitelnye glavy teorii obyknovennykh differentsialnykh uravnenii, Nauka, M., 1978
[16] Bibikov Yu.N., Kurs obyknovennykh differentsialnykh uravnenii, Vyssh. shk., M., 1991 | MR