Mots-clés : equations of motion
@article{IVM_2024_10_a9,
author = {V. N. Paimushin and V. M. Shishkin},
title = {The simplest transformation model of deformation of a rod-strip fixed on a double-sided support element through elastic interlayers},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {98--106},
year = {2024},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a9/}
}
TY - JOUR AU - V. N. Paimushin AU - V. M. Shishkin TI - The simplest transformation model of deformation of a rod-strip fixed on a double-sided support element through elastic interlayers JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 98 EP - 106 IS - 10 UR - http://geodesic.mathdoc.fr/item/IVM_2024_10_a9/ LA - ru ID - IVM_2024_10_a9 ER -
%0 Journal Article %A V. N. Paimushin %A V. M. Shishkin %T The simplest transformation model of deformation of a rod-strip fixed on a double-sided support element through elastic interlayers %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2024 %P 98-106 %N 10 %U http://geodesic.mathdoc.fr/item/IVM_2024_10_a9/ %G ru %F IVM_2024_10_a9
V. N. Paimushin; V. M. Shishkin. The simplest transformation model of deformation of a rod-strip fixed on a double-sided support element through elastic interlayers. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 98-106. http://geodesic.mathdoc.fr/item/IVM_2024_10_a9/
[1] Algazin S.D., Selivanov I.A., “Natural vibration of a rectangular plate with mixed boundary conditions”, J. Appl. Mech. and Techn. Phys., 62:2 (2021), 238–244 | DOI | MR | Zbl
[2] Algarray A., Jun H., Mahdi IE., “Effects of end conditions of cross-ply laminated composite beams on their dimensionless natural frequencies”, J. Appl. Mech. and Techn. Phys., 58:6 (2017), 1108–1114 | DOI | MR
[3] Krylova E., Papkova I., Erofeev N., “Complex fluctuations of flexible plates under longitudinal loads with account for white noise”, J. Appl. Mech. and Techn. Phys., 57:4 (2016), 714–719 | DOI | MR | Zbl
[4] M. Tüfekci, J. P. Dear, L. Salles, “Forced vibration analysis of beams with frictional clamps”, Appl. Math. Modelling, 128 (2024), 450–469 | DOI | MR
[5] Banks H., Inman D., “On damping mechanisms in beams”, J. Appl. Mech., 58:3 (1991), 716–723 | DOI | MR | Zbl
[6] Asadi K., Ahmadian H., Jalali H., “Micro/macro-slip damping in beams with frictional contact interface”, J. Sound and Vibration, 331:21 (2012), 4704–4712 | DOI
[7] Ferri A., Bindemann A., “Damping and vibrations of beams with various types of frictional support conditions”, Transactions Amer. Society Mech. Engineers, 114:3 (1992), 289–296 | DOI
[8] Paimushin V.N., Shishkin V.M., “Deformation of thin-walled structural elements having fixed areas of finite dimensions on the boundary front surfaces”, J. Appl. Mech. and Techn. Phys., 64:2 (2023), 308–324 | DOI | MR | Zbl
[9] Paimushin V.N., Shishkin V.M., “Refined model of dynamic deformation of a flat rod with a finite-length fixed region on an outer surface”, J. Appl. Mech. and Techn. Phys., 65:1 (2024), 165–175 | DOI | MR
[10] Paimushin V.N., Firsov V.A., Shishkin V.M., Gazizullin R.K., “Transformational deformation models of continuous thin-walled structural elements with support elements of finite sizes: Theoretical foundations, computational, and physical experiments”, J. Appl. Math. and Mech., 104:2, e202300214 | DOI | MR
[11] Yankovskii A.P., “Critical analysis of the equations of statics in the bending theories of composite plates obtained on the basis of variational principles of elasticity theory $1$. General theories of high order”, Mech. Composite Materials, 56:3 (2020), 271–290 | DOI
[12] Yankovskii A.P., “Critical analysis of the equations of statics in the bending theories of composite plates obtained on the basis of variational principles of elasticity theory $2$. Particular low-order theories”, Mech. Composite Materials, 56:4 (2020), 437–454 | DOI