@article{IVM_2024_10_a8,
author = {A. R. Chekhlov},
title = {Abelian groups with solvable {Lie} endomorphism rings},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {90--97},
year = {2024},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a8/}
}
A. R. Chekhlov. Abelian groups with solvable Lie endomorphism rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 90-97. http://geodesic.mathdoc.fr/item/IVM_2024_10_a8/
[1] Kurosh A.G., Lektsii po obschei algebre, Izd-vo fiz.-matem. literatury, M., 1962 | MR
[2] Krylov P.A., Mikhalev A.V., Tuganbaev A.A., Abelevy gruppy i ikh koltsa endomorfizmov, Faktorial Press, M., 2006
[3] Fuks L., Beskonechnye abelevy gruppy, v. 1, Mir, M., 1974
[4] Fuks L., Beskonechnye abelevy gruppy, v. 2, Mir, M., 1977
[5] Fuchs L., Abelian Groups, Springer, Switzerland, 2015 | MR | Zbl
[6] Chekhlov A.R., “Ob abelevykh gruppakh s nilpotentnymi kommutatorami endomorfizmov”, Izv. vuzov. Matem., 2012, no. 10, 60–73 | Zbl
[7] Chekhlov A.R., “Ob abelevykh gruppakh, blizkikh k E-razreshimym”, Fundament. i prikl. matem., 17:8 (2012), 183–219
[8] Latyshev V.N., “O slozhnosti nematrichnykh mnogoobrazii assotsiativnykh algebr. I”, Algebra i logika, 16:2 (1977), 149–183 | MR | Zbl
[9] Bokut L.A., Lvov I.V., Kharchenko V.K., “Nekommutativnye koltsa”, Algebra – 2, Itogi nauki i tekhn. Ser. Sovrem. probl. matem. Fundam. napravleniya, 18, VINITI, M., 1988, 5–116
[10] Chunbo Zhou, Heguo Liu, “The structure of an Abelian Groups whose Endomorphism Ring is a Solvable Lie Ring”, J. Math. Sci., 271 (2023), 583–593 | DOI | MR | Zbl