Countably many positive solutions for iterative system of boundary value problems on time scales
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 61-76 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper establishes the existence of countably many positive solutions for a second order iterative system of two-point boundary value problems by using Hölder's inequality and Guo–Krasnoselskii's fixed point theorem for operator on a cone.
Keywords: iterative system, Green's function, singularity, cone
Mots-clés : time scale, positive solution.
@article{IVM_2024_10_a6,
     author = {K. R. Prasad and B. Sravani and N. Sreedhar},
     title = {Countably many positive solutions for iterative system of boundary value problems on time scales},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {61--76},
     year = {2024},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a6/}
}
TY  - JOUR
AU  - K. R. Prasad
AU  - B. Sravani
AU  - N. Sreedhar
TI  - Countably many positive solutions for iterative system of boundary value problems on time scales
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 61
EP  - 76
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_10_a6/
LA  - ru
ID  - IVM_2024_10_a6
ER  - 
%0 Journal Article
%A K. R. Prasad
%A B. Sravani
%A N. Sreedhar
%T Countably many positive solutions for iterative system of boundary value problems on time scales
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 61-76
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2024_10_a6/
%G ru
%F IVM_2024_10_a6
K. R. Prasad; B. Sravani; N. Sreedhar. Countably many positive solutions for iterative system of boundary value problems on time scales. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 61-76. http://geodesic.mathdoc.fr/item/IVM_2024_10_a6/

[1] Agarwal R.P., Bohner M., “Basic Calculus on Time Scales and some of its Applications”, Results Math., 35 (1999), 3–22 | DOI | MR | Zbl

[2] Agarwal R., Bohner M., O'Regan D., Peterson A., “Dynamic equations on time scales: a survey”, J. Comput. Appl. Math., 141:1–2 (2002), 1–26 | DOI | MR | Zbl

[3] Bohner M., Peterson A.C., Advances in Dynamic Equations on Time Scales, Birkhauser, Boston, 2003 | MR | Zbl

[4] Benchohra M., Berhoun F., Hamani S., Henderson J., Ntouyas S.K., Quahab A., Purnas I.K., “Eigenvalues for iterative systems of nonlinear boundary value problems on time scales”, Nonlilnear Dyn. Syst. Theory, 1:1 (2009), 11–22 | MR | Zbl

[5] Prasad K.R., Khuddush M., Vidyasagar K.V., “Infinitely many positive solutions for an iterative system of singular BVP on time scales”, Cubo, 24:1 (2022), 21–35 | DOI | MR | Zbl

[6] Graef J.R., Heidarkhani S., Kong L., “Infinitely Many Solutions for Systems of Sturm–Liouville Boundary Value Problems”, Results Math., 66 (2014), 327–341 | DOI | MR | Zbl

[7] Henderson J., Ntouyas S.K., “Positive solutions for systems of $n^\text{th}$ order three-point nonlocal boundary value problems”, Electron. J. Qual. Theory Diff. Equat., 2007:18 (2007), 1–12 | MR

[8] Henderson J., Ntouyas S.K., Purnaras I.K., “Positive solutions for systems of generalized three-point nonlinear boundary value problems”, Comment. Math. Univ. Carol., 49:1 (2008), 79–91 | MR | Zbl

[9] Henderson J., Ntouyas S.K., Purnaras I.K., “Positive solutions for systems of second order four-point nonlinear boundary value problems”, Commun. Appl. Anal., 12:1 (2008), 29–40 | MR | Zbl

[10] Prasad K.R., Sreedhar N., Kumar K.R., “Solvability of iterative systems of three-point boundary value problems”, TWMS J. Appl. Eng. Math., 3:2 (2013), 147–159 | MR | Zbl

[11] Prasad K.R., Rashmita M., Sreedhar N., “Solvability of higher order three-point iterative systems”, Ufimsk. matem. zhurn., 12:3 (2020), 107–122 | MR | Zbl

[12] Benchohra M., Henderson J., Ntouyas S.K., “Eigenvalue Problems for Systems of Nonlinear Boundary Value Problems on Time Scales”, Adv. Diff. Equat., 2007:1 (2007), 1–10 | MR

[13] Prasad K.R., Sreedhar N., Srinivas M.A.S., “Eigenvalue intervals for iterative systems of nonlinear three-point boundary value problems on time scales”, Nonlinear Stud., 22:3 (2015), 419–431 | MR | Zbl

[14] Prasad K.R., Sreedhar N., Narasimhulu Y., “Eigenvalue intervals for iterative systems of nonlinear m-point boundary value problems on time scales”, Diff. Equat. Dyn. Syst., 22 (2014), 353–368 | DOI | MR | Zbl

[15] Prasad K.R., Khuddush M., Vidyasagar K.V., “Denumerably Many Positive Solutions for Iterative System of Singular Two-Point Boundary Value Problems on Time Scales”, Int. J. Diff. Equat., 15:1 (2020), 153–172 | MR | Zbl

[16] Karaca I.Y., Tokmak F., “Eigenvalues for iterative systems of nonlinear $m$-point boundary value problems on time scales”, Bound. Value Probl., 2014:63 (2014), 1–17 | MR

[17] Bohner M., Luo H., “Singular second-order multipoint dynamic boundary value problems with mixed derivatives”, Adv. Diff. Equat., 2006 (2006), 054989, 15 pp. | MR

[18] Agarwal R.P., Otero-Espinar V., Perera K., Vivero D.R., “Basic properties of Sobolev's spaces on time scales”, Adv. Diff. Equat., 2006 (2006), 038121, 14 pp. | MR

[19] Anastassiou G.A., Intelligent Mathematics: Computational Analysis, Springer, Heidelberg, 2011 | MR | Zbl

[20] Özkan U.M., Sarikaya M.Z., Yildirim H., “Extensions of certain integral inequalities on time scales”, Appl. Math. Lett., 21:10 (2008), 993–1000 | DOI | MR | Zbl

[21] Guo D., Lakshmikantham V., Nonlinear problems in abstract cones, Academic Press, San Diego, 1988 | MR | Zbl