Propagation of eigenwaves in plane three-layer media
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 51-60 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper considers the problem of propagation of natural stress waves in a strip that is in contact with an unbounded isotropic viscoelastic medium made of another material. It is assumed that there are no external influences during the propagation of natural waves. In some cases, the physical properties of viscoelastic materials are described by linear hereditary Boltzmann–Voltaire relations with integral differences of heredity kernels. Some of the layers can be elastic. In this case, the heredity kernels describing the rheological properties of the layers are identically zero. A system in which the rheological properties of the layers are identical (the nuclei of heredity of elements are equal to each other) will be called dissipatively homogeneous. In the particular case, when there are no external influences, the propagation of damped waves of the system is considered; — in the presence of external influences — forced. The main problem is the study of the dissipative (damping) properties of the system as a whole, as well as its stress-strain state.
Keywords: band, hereditary relationships, energy dissipation, damping coefficient.
@article{IVM_2024_10_a5,
     author = {J. Z. Nuriddinov and B. J. Nuriddinov and Z. Sh. Ochilova},
     title = {Propagation of eigenwaves in plane three-layer media},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {51--60},
     year = {2024},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a5/}
}
TY  - JOUR
AU  - J. Z. Nuriddinov
AU  - B. J. Nuriddinov
AU  - Z. Sh. Ochilova
TI  - Propagation of eigenwaves in plane three-layer media
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 51
EP  - 60
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_10_a5/
LA  - ru
ID  - IVM_2024_10_a5
ER  - 
%0 Journal Article
%A J. Z. Nuriddinov
%A B. J. Nuriddinov
%A Z. Sh. Ochilova
%T Propagation of eigenwaves in plane three-layer media
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 51-60
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2024_10_a5/
%G ru
%F IVM_2024_10_a5
J. Z. Nuriddinov; B. J. Nuriddinov; Z. Sh. Ochilova. Propagation of eigenwaves in plane three-layer media. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 51-60. http://geodesic.mathdoc.fr/item/IVM_2024_10_a5/

[1] Vestyak A.V., Gorshkov A.V., Tarlakovskii D.V., “Nestatsionarnoe vzaimodeistvie deformiruemykh tel s orkuzhayuschei sredoi”, Itogi nauki i tekhn. Ser. MDTT, 15, VINITI, M., 1983, 69–148 | MR

[2] Gorshkov A.G., “Nestatsionarnoe vzaimodeistvie plastin i obolochek so sploshnymi sredami”, Izv. RAN. MTT, 1981, no. 4, 177–189

[3] Bolotin V.V., Novichkov Yu.N., Mekhanika mnogosloinykh konstruktsii, Mashinostroenie, M., 1980

[4] Krylov V.V., “On the velocities of localised vibration modes in immersed solid wedges”, J. Acoustical Soc. Amer., 103:2 (1998), 767–770 | DOI | MR

[5] Hladky-Hennion A.-C., “Finite element analysis of the propagation of acoustic waves in waveguides”, J. Sound and Vibration, 194:2 (1996), 119–136 | DOI

[6] Krylov V.V., Shuvalov A.L., “Propagation of localised flexural vibrations along plate edges described by a power law”, Proc. Inst. Acoustics, 22:2 (2000), 263–270

[7] Shuvalov A.L., Krylov V.V., “Localised vibration modes in free anisotropic wedges”, J. Acoustical Soc. Amer., 107:1 (2000), 657–660 | DOI

[8] Krylov V.V., Parker D.F., “Harmonic generation and parametric mixing in wedge acoustic waves”, Wave Motion, 15:2 (1992), 185–200 | DOI | MR | Zbl

[9] Krylov V.V., Mayer A.P., Parker D.F., “Nonlinear evolution of initially sine-like wedge acoustic waves”, Proc. IEEE 1993 Ultrasonics Symposium (Baltimore, USA), 1993, 765–768 | DOI

[10] Mayer A.P., Krylov V.V., Lomonosov A.M., “Guided acoustic waves propagating at surfaces, interfaces and edges”, Proc. IEEE 2011 International Ultrasonics Symposium (Orlando, FL, USA), 2011, 2046–2052 | DOI

[11] Hayashi T., Tamayama S., Murase M., “Wave structure analysis of guided waves in a bar with an arbitrary cross-section”, Ultrasonics, 44:1 (2006), 17–24 | DOI