Convergence of the trajectories of a non-Volterra quadratic stochastic operator
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 45-50 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present paper we consider non-Volterra quadratic stochastic operators defined on the two-dimensional simplex depending on a parameter $\alpha$. We show that such an operator has a unique fixed point and all the trajectories converge to this unique fixed point.
Keywords: quadratic stochastic operator, Volterra and non-Volterra operator, trajectory
Mots-clés : simplex.
@article{IVM_2024_10_a4,
     author = {B. J. Mamurov},
     title = {Convergence of the trajectories of a {non-Volterra} quadratic stochastic operator},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {45--50},
     year = {2024},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a4/}
}
TY  - JOUR
AU  - B. J. Mamurov
TI  - Convergence of the trajectories of a non-Volterra quadratic stochastic operator
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 45
EP  - 50
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_10_a4/
LA  - ru
ID  - IVM_2024_10_a4
ER  - 
%0 Journal Article
%A B. J. Mamurov
%T Convergence of the trajectories of a non-Volterra quadratic stochastic operator
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 45-50
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2024_10_a4/
%G ru
%F IVM_2024_10_a4
B. J. Mamurov. Convergence of the trajectories of a non-Volterra quadratic stochastic operator. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 45-50. http://geodesic.mathdoc.fr/item/IVM_2024_10_a4/

[1] Blath J., Jamilov U.U., Scheutzow M., “$(G,\mu)$-quadratic stochastic operators”, J. Diff. Equat. Appl., 20:8 (2014), 1258–1267 | DOI | MR | Zbl

[2] Ganikhodzhaev R.N., “Kvadratichnye stokhasticheskie operatory, funktsii Lyapunova i turniry”, Matem. sb., 183:8 (1992), 119–140

[3] Ganikhodzhaev R., Mukhamedov F., Rozikov U., “Quadratic stochastic operators and processes: results and open problems”, Infin. Dimens. Anal. Quan. Probab. Relat. Top., 14:2 (2011), 279–335 | DOI | MR | Zbl

[4] Jamilov U.U., “Quadratic stochastic operators corresponding to graphs”, Lobachevskii J. Math., 34:2 (2013), 148–151 | DOI | MR | Zbl

[5] Jamilov U.U., “On a family of strictly non-volterra quadratic stochastic operators”, J. Phys.: Conf. Ser., 697:1 (2016), 012013 | DOI | MR

[6] Jamilov U.U., Mamurov B.J., “Asymptotical behavior of trajectories of non-Volterra quadratic stochastic operators”, Lobachevskii J. Math., 43:11 (2022), 3174–3182 | DOI | MR

[7] Jamilov U.U., Khudoyberdiev Kh.O., “An $(\alpha$, $\beta)$-quadratic stochastic operator acting in S$2$”, J. Appl. Nonlinear Dynamics, 11:4 (2022), 777–788 | DOI | MR | Zbl

[8] Lyubich Y.I., Mathematical Structures in Population Genetics, Biomathematics, 22, Springer-Verlag, Berlin, 1992 | MR | Zbl

[9] Mamurov B.Dzh., “Vypuklaya kombinatsiya dvukh kvadratichnykh stokhasticheskikh operatorov, deistvuyuschikh na $2D$-simplekse”, Izv. vuzov. Matem., 2023, no. 7, 66–70 | MR

[10] Rozikov U.A., Solaeva M.N., “Behavior of Trajectories of a Quadratic Operator”, Lobachevskii J. Math., 44:7 (2023), 2910–2915 | DOI | MR | Zbl

[11] Rozikov U.A., Nazir S., “Separable Quadratic Stochastic Operators”, Lobachevskii J. Math., 31:3 (2010), 215–221 | DOI | MR | Zbl

[12] Ulam S.M., A collection of Mathematical Problems, Interscience Tracts in Pure and Applied Mathematics, 8, Interscience Publ., New York–London, 1960 | MR | Zbl

[13] Devaney R.L., An introduction to chaotic dynamical systems, Studies in Nonlinearity, 2nd edition, Addison-Wesley Publ. Comp., 1989 | MR | Zbl