On some extensions of $\pi$-regular rings
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 22-33 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Some variations of $\pi$-regular and nil clean rings were recently introduced in the works of the first author: "A generalization of $\pi$-regular rings, Turkish J. Math. 43 (2), 702–711 (2019)", "A symmetrization in $\pi$-regular rings, Trans. A. Razmadze Math. Inst. 174 (3), 271–275 (2020)", "A symmetric generalization of $\pi$-regular rings, Ric. Mat. 73 (1), 179–190 (2024)". In this paper, we examine the structure and relationships between these classes of rings. Specifically, we prove that $(m, n)$-regularly nil clean rings are left-right symmetric and also show that the inclusions ($D$-regularly nil clean) $\subseteq$ (regularly nil clean) $\subseteq$ ($(m,n)$-regularly nil clean) hold, as well as we answer Questions 1, 2 and 3 posed in the third of the above-listed works. Moreover, we also consider other similar questions concerning the symmetric properties of certain classes of rings. For example, it is proven that centrally Utumi rings are always strongly \(\pi\)-regular.
Keywords: strongly $\pi$-regular rings, $D$-regularly nil clean rings, $(m,n)$-regularly nil clean rings.
@article{IVM_2024_10_a2,
     author = {P. Danchev and A. Javan and A. Moussavi},
     title = {On some extensions of $\pi$-regular rings},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {22--33},
     year = {2024},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a2/}
}
TY  - JOUR
AU  - P. Danchev
AU  - A. Javan
AU  - A. Moussavi
TI  - On some extensions of $\pi$-regular rings
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 22
EP  - 33
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_10_a2/
LA  - ru
ID  - IVM_2024_10_a2
ER  - 
%0 Journal Article
%A P. Danchev
%A A. Javan
%A A. Moussavi
%T On some extensions of $\pi$-regular rings
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 22-33
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2024_10_a2/
%G ru
%F IVM_2024_10_a2
P. Danchev; A. Javan; A. Moussavi. On some extensions of $\pi$-regular rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 22-33. http://geodesic.mathdoc.fr/item/IVM_2024_10_a2/

[1] Lam T.Y., A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, 2nd edition, Springer-Verlag, New York, 2001 | DOI | MR | Zbl

[2] Lam T.Y., Exercises in Classical Ring Theory, Problem Books in Mathematics, 2nd edition, Springer-Verlag, New York, 2003 | MR | Zbl

[3] Goodearl K.R., Von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman, Boston, Massachussetts, 1979 | MR | Zbl

[4] Tuganbaev A.A., Rings Close to Regular, Mathematics and Its Applications, 545, Springer Netherlands, Amsterdam, 2013 | MR

[5] Danchev P.V., “Generalizing nil clean rings”, Bull. Belg. Math. Soc. (Simon Stevin), 25:1 (2018), 13–29 | MR

[6] Hartwig R., Luh J., “A note on the group structure of unit regular ring elements”, Pac. J. Math., 71:2 (1977), 449–461 | DOI | MR | Zbl

[7] Lam T.Y., Murray W., “Unit regular elements in corner rings”, Bull. Hong Kong Math. Soc., 1:1 (1997), 61–65 | MR | Zbl

[8] Kaplansky I., “Topological representation of algebras II”, Trans. Amer. Math. Soc., 68:1 (1950), 62–75 | DOI | MR | Zbl

[9] Azumaya G., “Strongly $\pi$-regular rings”, J. Fac. Sci. Hokkaido Univ. Ser. I, 13:1 (1954), 034–039 | MR

[10] Dischinger F., “Sur les anneaux fortement $\pi$-réguliers”, Compt. Rend. Acad. Sci. Paris. Ser. A–B, 283:8 (1976), 571–573 | MR | Zbl

[11] Danchev P.V., “A generalization of $\pi$-regular rings”, Turkish J. Math., 43:2 (2019), 702–711 | DOI | MR | Zbl

[12] Danchev P.V., “A symmetrization in $\pi$-regular rings”, Trans. A. Razmadze Math. Inst., 174:3 (2020), 271–275 | MR | Zbl

[13] Danchev P.V., “A symmetric generalization of $\pi$-regular rings”, Ric. Mat., 73:1 (2024), 179–190 | DOI | MR | Zbl

[14] Danchev P.V., Šter J., “Generalizing $\pi$-regular rings”, Taiwanese J. Math., 19:6 (2015), 1577–1592 | DOI | MR | Zbl

[15] Nicholson W.K., “Lifting Idempotents and Exchange Rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl

[16] Nicholson W.K., “Strongly clean rings and fitting's lemma”, Commun. Algebra, 27:8 (1999), 3583–3592 | DOI | MR | Zbl

[17] Khurana D., Lam T.Y., Nielsen P.P., “Two-Sided Properties of Elements in Exchange Rings”, Algebras Represent. Theory, 18 (2015), 931–940 | DOI | MR | Zbl

[18] Diesl A.J., “Nil clean rings”, J. Algebra, 383 (2013), 197–211 | DOI | MR | Zbl

[19] Stock J., “On rings whose projective modules have the exchange property”, J. Algebra, 103:2 (1986), 437–453 | DOI | MR | Zbl

[20] Chen J., Yang X., Zhou Y., “On Strongly Clean Matrix and Triangular Matrix Rings”, Commun. Algebra, 34:10 (2006), 3659–3674 | DOI | MR | Zbl

[21] Hegde S., “On uniquely clean elements”, Commun. Algebra, 51:5 (2023), 1835–1839 | DOI | MR | Zbl

[22] Khurana D., Lam T.Y., Nielsen P.P., Zhou Y., “Uniquely clean elements in rings”, Commun. Algebra, 43:5 (2015), 1742–1751 | DOI | MR | Zbl

[23] Handelman D., “Perspectivity and cancellation in regular rings”, J. Algebra, 48:1 (1977), 1–16 | DOI | MR | Zbl

[24] Camillo V.P., Yu H.-P., “Exchange rings, units and idempotents”, Commun. Algebra, 22:12 (1994), 4737–4749 | DOI | MR | Zbl

[25] Nielsen P.P., Šter J., “Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings”, Trans. Amer. Math. Soc., 370:3 (2018), 1759–1782 | DOI | MR | Zbl