@article{IVM_2024_10_a2,
author = {P. Danchev and A. Javan and A. Moussavi},
title = {On some extensions of $\pi$-regular rings},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {22--33},
year = {2024},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a2/}
}
P. Danchev; A. Javan; A. Moussavi. On some extensions of $\pi$-regular rings. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 22-33. http://geodesic.mathdoc.fr/item/IVM_2024_10_a2/
[1] Lam T.Y., A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131, 2nd edition, Springer-Verlag, New York, 2001 | DOI | MR | Zbl
[2] Lam T.Y., Exercises in Classical Ring Theory, Problem Books in Mathematics, 2nd edition, Springer-Verlag, New York, 2003 | MR | Zbl
[3] Goodearl K.R., Von Neumann Regular Rings, Monographs and Studies in Mathematics, 4, Pitman, Boston, Massachussetts, 1979 | MR | Zbl
[4] Tuganbaev A.A., Rings Close to Regular, Mathematics and Its Applications, 545, Springer Netherlands, Amsterdam, 2013 | MR
[5] Danchev P.V., “Generalizing nil clean rings”, Bull. Belg. Math. Soc. (Simon Stevin), 25:1 (2018), 13–29 | MR
[6] Hartwig R., Luh J., “A note on the group structure of unit regular ring elements”, Pac. J. Math., 71:2 (1977), 449–461 | DOI | MR | Zbl
[7] Lam T.Y., Murray W., “Unit regular elements in corner rings”, Bull. Hong Kong Math. Soc., 1:1 (1997), 61–65 | MR | Zbl
[8] Kaplansky I., “Topological representation of algebras II”, Trans. Amer. Math. Soc., 68:1 (1950), 62–75 | DOI | MR | Zbl
[9] Azumaya G., “Strongly $\pi$-regular rings”, J. Fac. Sci. Hokkaido Univ. Ser. I, 13:1 (1954), 034–039 | MR
[10] Dischinger F., “Sur les anneaux fortement $\pi$-réguliers”, Compt. Rend. Acad. Sci. Paris. Ser. A–B, 283:8 (1976), 571–573 | MR | Zbl
[11] Danchev P.V., “A generalization of $\pi$-regular rings”, Turkish J. Math., 43:2 (2019), 702–711 | DOI | MR | Zbl
[12] Danchev P.V., “A symmetrization in $\pi$-regular rings”, Trans. A. Razmadze Math. Inst., 174:3 (2020), 271–275 | MR | Zbl
[13] Danchev P.V., “A symmetric generalization of $\pi$-regular rings”, Ric. Mat., 73:1 (2024), 179–190 | DOI | MR | Zbl
[14] Danchev P.V., Šter J., “Generalizing $\pi$-regular rings”, Taiwanese J. Math., 19:6 (2015), 1577–1592 | DOI | MR | Zbl
[15] Nicholson W.K., “Lifting Idempotents and Exchange Rings”, Trans. Amer. Math. Soc., 229 (1977), 269–278 | DOI | MR | Zbl
[16] Nicholson W.K., “Strongly clean rings and fitting's lemma”, Commun. Algebra, 27:8 (1999), 3583–3592 | DOI | MR | Zbl
[17] Khurana D., Lam T.Y., Nielsen P.P., “Two-Sided Properties of Elements in Exchange Rings”, Algebras Represent. Theory, 18 (2015), 931–940 | DOI | MR | Zbl
[18] Diesl A.J., “Nil clean rings”, J. Algebra, 383 (2013), 197–211 | DOI | MR | Zbl
[19] Stock J., “On rings whose projective modules have the exchange property”, J. Algebra, 103:2 (1986), 437–453 | DOI | MR | Zbl
[20] Chen J., Yang X., Zhou Y., “On Strongly Clean Matrix and Triangular Matrix Rings”, Commun. Algebra, 34:10 (2006), 3659–3674 | DOI | MR | Zbl
[21] Hegde S., “On uniquely clean elements”, Commun. Algebra, 51:5 (2023), 1835–1839 | DOI | MR | Zbl
[22] Khurana D., Lam T.Y., Nielsen P.P., Zhou Y., “Uniquely clean elements in rings”, Commun. Algebra, 43:5 (2015), 1742–1751 | DOI | MR | Zbl
[23] Handelman D., “Perspectivity and cancellation in regular rings”, J. Algebra, 48:1 (1977), 1–16 | DOI | MR | Zbl
[24] Camillo V.P., Yu H.-P., “Exchange rings, units and idempotents”, Commun. Algebra, 22:12 (1994), 4737–4749 | DOI | MR | Zbl
[25] Nielsen P.P., Šter J., “Connections between unit-regularity, regularity, cleanness, and strong cleanness of elements and rings”, Trans. Amer. Math. Soc., 370:3 (2018), 1759–1782 | DOI | MR | Zbl