Some new congruences for simultaneously $s$-regular and $t$-distinct partition function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 18-21 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A partition of a positive integer $n$ is said to be simultaneously $s$-regular and $t$-distinct partition if none of the parts is divisible by $s$ and parts appear fewer than $t$ times. In this paper, we present some new congruences for simultaneously $s$-regular and $t$-distinct partition function denoted by $ M_{s,t}^d (n)$ with $(s,t) \in \{(2,5),(3,4), (4,9), (5\alpha,5\beta),(7\alpha,7\beta),(p,p)\}$, where $\alpha$ and $\beta$ are any positive integers and $p$ is any prime.
Keywords: $s$-regular and $t$-distinct partition, congruence, $q$-series identities.
@article{IVM_2024_10_a1,
     author = {P. Buragohain and N. Saikia},
     title = {Some new congruences for simultaneously $s$-regular and $t$-distinct partition function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {18--21},
     year = {2024},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a1/}
}
TY  - JOUR
AU  - P. Buragohain
AU  - N. Saikia
TI  - Some new congruences for simultaneously $s$-regular and $t$-distinct partition function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 18
EP  - 21
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_10_a1/
LA  - ru
ID  - IVM_2024_10_a1
ER  - 
%0 Journal Article
%A P. Buragohain
%A N. Saikia
%T Some new congruences for simultaneously $s$-regular and $t$-distinct partition function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 18-21
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2024_10_a1/
%G ru
%F IVM_2024_10_a1
P. Buragohain; N. Saikia. Some new congruences for simultaneously $s$-regular and $t$-distinct partition function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 18-21. http://geodesic.mathdoc.fr/item/IVM_2024_10_a1/

[1] Keith W.J., “A bijection for partitions simultaneously $s$-regular and $t$-distinct”, Integers, 23:#A9 (2023) | MR | Zbl

[2] Rødseth Ø., “Dissections of the generating functions of $q(n)$ and $q_0(n)$”, Arbok Univ. Bergen Mat. Nat., 1969, no. 12, 3–12 | MR

[3] Keith W.J., “Partitions into Parts Simultaneously Regular, Distinct, And/or Flat”, Combinatorial and Additive Number Theory II, CANT 2015, CANT 2016 (New York, NY, USA), Springer Proc. Math. Statistics, 220 | MR

[4] Hirschhorn M.D., Sellers J.A., “Elementary proofs of parity results for $5$-regular partitions”, Bull. Aust. Math. Soc., 81:1 (2010), 58–63 | DOI | MR | Zbl

[5] Hirschhorn M.D., The Power of $q$, A Personal Journey, Developments in Mathematics, 49, Springer, Cham, 2017 | DOI | MR | Zbl

[6] Berndt B.C., Ramanujan's Notebooks, v. III, Springer-Verlag, New York, 1991 | MR

[7] Cui S.P., Gu N.S.S., “Arithmetic properties of $\ell$-regular partitions”, Adv. Appl. Math., 51 (2013), 507–523 | DOI | MR | Zbl