@article{IVM_2024_10_a0,
author = {R. K. Bera and B. L. Ghodadra},
title = {Rate of convergence of certain {Fourier} series of functions of generalized bounded variation},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {3--17},
year = {2024},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a0/}
}
TY - JOUR AU - R. K. Bera AU - B. L. Ghodadra TI - Rate of convergence of certain Fourier series of functions of generalized bounded variation JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2024 SP - 3 EP - 17 IS - 10 UR - http://geodesic.mathdoc.fr/item/IVM_2024_10_a0/ LA - ru ID - IVM_2024_10_a0 ER -
R. K. Bera; B. L. Ghodadra. Rate of convergence of certain Fourier series of functions of generalized bounded variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 3-17. http://geodesic.mathdoc.fr/item/IVM_2024_10_a0/
[1] Jordan C., “Sur la séries de Fourier”, C. R. Acad. Sci. Paris., 92 (1881), 228–230
[2] Zygmund A., Trigonometric series, v. I, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl
[3] Young W.H., “Konvergenzbedingungen für die verwandte Reihe einer Fourierschen Reihe”, Munch. Ber., 1911, no. 41, 361–371
[4] Tan L., Qian T., “On convergence of rational Fourier series of functions of bounded variations”, Sci. Sin. Math., 43:6 (2013), 541–550 | DOI | Zbl
[5] Bojanić R., “An estimate of the rate of convergence for Fourier series of functions of bounded variation”, Publ. Inst. Math. (Beograd) (N.S.), 26:40 (1979), 57–60 | MR | Zbl
[6] Bojanić R., Waterman D., “On the rate of convergence of Fourier series of functions of generalized bounded variation”, Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat. Nauka, 22 (1983), 5–11 | MR | Zbl
[7] Khachar H.J., Vyas R.G., “Rate of convergence for rational and conjugate rational Fourier series of functions of generalized bounded variation”, Acta Comm. Univ. Tartuensis Math., 26:2 (2022), 233–241 | MR | Zbl
[8] Mazhar S.M., Al-Budaiwi A., “An estimate of the rate of convergence of the conjugate Fourier series of functions of bounded variation”, Acta Math. Hungarica, 49 (1987), 377–380 | DOI | MR | Zbl
[9] Wiener N., “The Quadratic Variation of a Function and its Fourier Coefficients”, Mass. J. Math., 1924, no. 3, 72–94
[10] Siddiqi R.N., “On convergence of the conjugate Fourier series of a function of Wiener's class”, Bull. Australian Math. Soc., 39:3 (1989), 335–338 | DOI | MR | Zbl
[11] Bultheel A., Gonzàlez-Vera P., Hendriksen E., Njastad O., Orthogonal rational functions, Cambridge Univ. Press, 1999 | MR | Zbl
[12] Ninness B., Gustafsson F., “A unifying construction of orthonormal bases for system identification”, IEEE Transactions on Automatic Control, 42:4 (1997), 515–521 | DOI | MR | Zbl
[13] Vyas R.G., “Properties of functions of generalized bounded variation”, Math. Anal., Approx. Theory and Their Appl., 2016, 715–741 | MR | Zbl
[14] Hormozi M., Ledari A., Prus-Wisniowski F., “On $p$-$\Lambda$-bounded variation”, Bull. Iran. Math. Soc., 37:4 (2011), 35–49 | MR
[15] Bari N.K., A treatise on trigonometric series, v. I, Pergamon, Newyork, 1964 | MR | Zbl
[16] Garnett J.B., Bounded Analytic Functions, Academic Press, 1981 | MR | Zbl