Rate of convergence of certain Fourier series of functions of generalized bounded variation
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 3-17 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper, we discuss the rate of convergence of the rational Fourier series and conjugate rational Fourier series of functions of generalized bounded variation. In particular, well-known Wiener's and Siddiqi's theorems for functions of $p$-bounded variation are proved in more general complete rational orthogonal system. Also some results are obtained for a class of functions wider than the class of functions of bounded variation and of $\{n^{\alpha}\}$-bounded variation.
Keywords: Fourier series, rational Fourier series, pointwise convergence, rate of convergence, $p$-$\Lambda$-bounded variation.
@article{IVM_2024_10_a0,
     author = {R. K. Bera and B. L. Ghodadra},
     title = {Rate of convergence of certain {Fourier} series of functions of generalized bounded variation},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {3--17},
     year = {2024},
     number = {10},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2024_10_a0/}
}
TY  - JOUR
AU  - R. K. Bera
AU  - B. L. Ghodadra
TI  - Rate of convergence of certain Fourier series of functions of generalized bounded variation
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2024
SP  - 3
EP  - 17
IS  - 10
UR  - http://geodesic.mathdoc.fr/item/IVM_2024_10_a0/
LA  - ru
ID  - IVM_2024_10_a0
ER  - 
%0 Journal Article
%A R. K. Bera
%A B. L. Ghodadra
%T Rate of convergence of certain Fourier series of functions of generalized bounded variation
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2024
%P 3-17
%N 10
%U http://geodesic.mathdoc.fr/item/IVM_2024_10_a0/
%G ru
%F IVM_2024_10_a0
R. K. Bera; B. L. Ghodadra. Rate of convergence of certain Fourier series of functions of generalized bounded variation. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 10 (2024), pp. 3-17. http://geodesic.mathdoc.fr/item/IVM_2024_10_a0/

[1] Jordan C., “Sur la séries de Fourier”, C. R. Acad. Sci. Paris., 92 (1881), 228–230

[2] Zygmund A., Trigonometric series, v. I, Cambridge Univ. Press, Cambridge, 1959 | MR | Zbl

[3] Young W.H., “Konvergenzbedingungen für die verwandte Reihe einer Fourierschen Reihe”, Munch. Ber., 1911, no. 41, 361–371

[4] Tan L., Qian T., “On convergence of rational Fourier series of functions of bounded variations”, Sci. Sin. Math., 43:6 (2013), 541–550 | DOI | Zbl

[5] Bojanić R., “An estimate of the rate of convergence for Fourier series of functions of bounded variation”, Publ. Inst. Math. (Beograd) (N.S.), 26:40 (1979), 57–60 | MR | Zbl

[6] Bojanić R., Waterman D., “On the rate of convergence of Fourier series of functions of generalized bounded variation”, Akad. Nauka Umjet. Bosne Hercegov. Rad. Odjelj. Prirod. Mat. Nauka, 22 (1983), 5–11 | MR | Zbl

[7] Khachar H.J., Vyas R.G., “Rate of convergence for rational and conjugate rational Fourier series of functions of generalized bounded variation”, Acta Comm. Univ. Tartuensis Math., 26:2 (2022), 233–241 | MR | Zbl

[8] Mazhar S.M., Al-Budaiwi A., “An estimate of the rate of convergence of the conjugate Fourier series of functions of bounded variation”, Acta Math. Hungarica, 49 (1987), 377–380 | DOI | MR | Zbl

[9] Wiener N., “The Quadratic Variation of a Function and its Fourier Coefficients”, Mass. J. Math., 1924, no. 3, 72–94

[10] Siddiqi R.N., “On convergence of the conjugate Fourier series of a function of Wiener's class”, Bull. Australian Math. Soc., 39:3 (1989), 335–338 | DOI | MR | Zbl

[11] Bultheel A., Gonzàlez-Vera P., Hendriksen E., Njastad O., Orthogonal rational functions, Cambridge Univ. Press, 1999 | MR | Zbl

[12] Ninness B., Gustafsson F., “A unifying construction of orthonormal bases for system identification”, IEEE Transactions on Automatic Control, 42:4 (1997), 515–521 | DOI | MR | Zbl

[13] Vyas R.G., “Properties of functions of generalized bounded variation”, Math. Anal., Approx. Theory and Their Appl., 2016, 715–741 | MR | Zbl

[14] Hormozi M., Ledari A., Prus-Wisniowski F., “On $p$-$\Lambda$-bounded variation”, Bull. Iran. Math. Soc., 37:4 (2011), 35–49 | MR

[15] Bari N.K., A treatise on trigonometric series, v. I, Pergamon, Newyork, 1964 | MR | Zbl

[16] Garnett J.B., Bounded Analytic Functions, Academic Press, 1981 | MR | Zbl