Transformation operator for the Schrodinger equation with additional exponential potential
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 76-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the one-dimensional Schrodinger equation on the semiaxis with an additional exponential potential. Using transformation operators with the asymptotics at infinity, a triangular representation of a special solution of this equation is found. An estimate is obtained with respect to the kernel of the representation.
Keywords: Schrödinger equation, transformation operator, triangular representation, second-order hyperbolic equation, Riemann function.
@article{IVM_2023_9_a5,
     author = {A. Kh. Khanmamedov and M. F. Muradov},
     title = {Transformation operator for the {Schrodinger} equation with additional exponential potential},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {76--84},
     publisher = {mathdoc},
     number = {9},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a5/}
}
TY  - JOUR
AU  - A. Kh. Khanmamedov
AU  - M. F. Muradov
TI  - Transformation operator for the Schrodinger equation with additional exponential potential
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 76
EP  - 84
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_9_a5/
LA  - ru
ID  - IVM_2023_9_a5
ER  - 
%0 Journal Article
%A A. Kh. Khanmamedov
%A M. F. Muradov
%T Transformation operator for the Schrodinger equation with additional exponential potential
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 76-84
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_9_a5/
%G ru
%F IVM_2023_9_a5
A. Kh. Khanmamedov; M. F. Muradov. Transformation operator for the Schrodinger equation with additional exponential potential. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 76-84. http://geodesic.mathdoc.fr/item/IVM_2023_9_a5/

[1] Levitan B.M., Obratnye zadachi Shturma–Liuvillya, Nauka, M., 1984 | MR

[2] Delsarte J., “Sur une extension de la formule de Taylor”, J. Math. Pures Appl., 17 (1938), 213–231 | Zbl

[3] Marchenko V.A., “Nekotorye voprosy teorii differentsialnogo operatora vtorogo poryadka”, DAN SSSR, 72:3 (1950), 457–460 | Zbl

[4] Povzner A.Ya., “O differentsialnykh uravneniyakh tipa Shturma–Liuvillya na poluosi”, Matem. sb., 65:1 (1948), 3–52 | MR

[5] Levin B.Ya., “Preobrazovaniya tipa Fure i Laplasa pri pomoschi reshenii differentsialnogo uravneniya vtorogo poryadka”, Dokl. AN SSSR, 106 (1956), 187–190 | Zbl

[6] Marchenko V.A., Operatory Shturma–Liuvillya i ikh prilozheniya, Nauk. dumka, Kiev, 1977 | MR

[7] Gasymov M.G., Mustafaev B.A., “Obratnaya zadacha rasseyaniya dlya angarmonicheskogo uravneniya na poluosi”, DAN SSSR, 228:1 (1976), 321–323

[8] Yishen Li, “One special inverse problem of the second order differential equation on the whole real axis”, Chin. Ann. of Math., 2:2 (1981), 147–155 | MR

[9] Kachalov A.P., Kurylev Ya.V., “Metod operatorov preobrazovaniya v obratnoi zadache rasseyaniya. Odnomernyi shtark-effekt”, Zap. nauchn. sem. LOMI, 179, 1989, 73–87

[10] Khanmamedov A.Kh., Makhmudova M.G., “Ob operatore preobrazovaniya dlya uravneniya Shredingera s dopolnitelnym lineinym potentsialom”, Funkts. analiz i ego pril., 54:1 (2020), 93–96 | DOI | MR | Zbl

[11] Khanmamedov A.Kh., Makhmudova M.G., Gafarova N.F., “Special solutions of the Stark equation”, Adv. Math. Models Appl., 6:1 (2021), 59–62

[12] Takhtadzhyan L.A., Faddeev L.D., “Spektralnaya teoriya odnogo funktsionalno-raznostnogo operatora konformnoi teorii polya”, Izv. RAN. Ser. matem., 79:2 (2015), 181–204 | DOI | MR | Zbl

[13] Khanmamedov A.Kh., Mamedova A.F., “A note on the Schrödinger operator with exponential potential”, Pros. Ins. Math. Mech. NAS Azerbaijan, 47:1 (2021), 138–142 | MR | Zbl

[14] Abramovits M., Stigan I., Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979

[15] Courant R., Hilbert D., Methods of Mathematical Physics, v. II, Partial Differential Equations, Wiley - VCH Verlag, 1962 | MR | Zbl

[16] Firsova N.E., “Obratnaya zadacha rasseyaniya dlya vozmuschennogo operatora Khilla”, Matem. zametki, 18:6 (1975), 831–843 | MR | Zbl

[17] Khanmamedov A.Kh., Mamedova A.F., “Odno zamechanie k obratnoi zadache rasseyaniya dlya vozmuschennogo uravneniya Khilla”, Matem. zametki, 112:6 (2022), 263–268 | Zbl