Transformation operator for the Schrodinger equation with additional exponential potential
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 76-84
Voir la notice de l'article provenant de la source Math-Net.Ru
In this paper, we consider the one-dimensional Schrodinger equation on the semiaxis with an additional exponential potential. Using transformation operators with the asymptotics at infinity, a triangular representation of a special solution of this equation is found. An estimate is obtained with respect to the kernel of the representation.
Keywords:
Schrödinger equation, transformation operator, triangular representation, second-order hyperbolic equation, Riemann function.
@article{IVM_2023_9_a5,
author = {A. Kh. Khanmamedov and M. F. Muradov},
title = {Transformation operator for the {Schrodinger} equation with additional exponential potential},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {76--84},
publisher = {mathdoc},
number = {9},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a5/}
}
TY - JOUR AU - A. Kh. Khanmamedov AU - M. F. Muradov TI - Transformation operator for the Schrodinger equation with additional exponential potential JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 76 EP - 84 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_9_a5/ LA - ru ID - IVM_2023_9_a5 ER -
%0 Journal Article %A A. Kh. Khanmamedov %A M. F. Muradov %T Transformation operator for the Schrodinger equation with additional exponential potential %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 76-84 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_9_a5/ %G ru %F IVM_2023_9_a5
A. Kh. Khanmamedov; M. F. Muradov. Transformation operator for the Schrodinger equation with additional exponential potential. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 76-84. http://geodesic.mathdoc.fr/item/IVM_2023_9_a5/