On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 20-26.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper considers a two-point boundary value problem with homogeneous boundary conditions for a single nonlinear ordinary differential equation of order $4n$. Using the well-known Krasnoselsky theorem on the expansion (compression) of a cone, sufficient conditions for the existence of a positive solution to the problem under consideration are obtained. To prove the uniqueness of a positive solution, the principle of compressed operators was invoked. In conclusion, an example is given that illustrates the fulfillment of the obtained sufficient conditions for the unique solvability of the problem under study.
Mots-clés : positive solution
Keywords: boundary value problem, cone, Green's function.
@article{IVM_2023_9_a1,
     author = {G. E. Abduragimov},
     title = {On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {20--26},
     publisher = {mathdoc},
     number = {9},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a1/}
}
TY  - JOUR
AU  - G. E. Abduragimov
TI  - On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 20
EP  - 26
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_9_a1/
LA  - ru
ID  - IVM_2023_9_a1
ER  - 
%0 Journal Article
%A G. E. Abduragimov
%T On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 20-26
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_9_a1/
%G ru
%F IVM_2023_9_a1
G. E. Abduragimov. On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 20-26. http://geodesic.mathdoc.fr/item/IVM_2023_9_a1/

[1] Kannan R., Schuur J., “Boundary value problems for even order nonlinear ordinary differential equations”, Bull. Amer. Math. Soc., 82:1 (1976), 80–82 | DOI | MR | Zbl

[2] Orudzhev E.G., “Kraevye zadachi dlya differentsialnykh uravnenii chetnogo poryadka s kratnymi kharakteristikami”, Dokl. RAN, 368:1 (1999), 14–17 | MR | Zbl

[3] Baranetsky Ya.O., Yarka U., “On a class of boundary value problems for differential equations of even order Operator”, Matt. Methods Phys. Fur. Polya, 2 (1999), 1–6 | MR

[4] Liu Y., “Solutions of two-point boundary value problems for even-order differential equations”, J. Math. Anal. Appl., 323:1 (2006), 721–740 | DOI | MR | Zbl

[5] Stanek S., “Nonlocal singular boundary value problems for even-order differential equations”, Mem. Diff. Equat. Math. Phys., 40:1 (2006), 91–104 | MR

[6] Bica M., Curila M., Curila S., “Two-point boundary value problems associated to functional differential equations of even order solved by iterated splines”, Appl. Numer. Math., 110 (2016), 128–147 | DOI | MR | Zbl

[7] Zulfugarova R.T., “Ob odnoi spektralnoi zadache dlya differentsialnogo uravneniya chetnogo poryadka s odnim kratnym kharakteristicheskim kornem”, Probl. sovremen. nauki i obrazovaniya, 12:132 (2018), 1–6

[8] Qiu W., Xu D., Zhou J., Guo J., “An efficient Sinc-collocation method via the DE transformation for eighth-order boundary value problems”, J. Comput. Appl. Math., 408 (2022), 114136 | DOI | MR | Zbl

[9] Abduragimov E.I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo obyknovennogo differentsialnogo uravneniya chetvertogo poryadka”, Izv. vuzov. Matem., 2006, no. 8, 3–6 | MR

[10] Abduragimov E.I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka i chislennyi metod ego postroeniya”, Vestn. SamGU. Estestvennonauchn. ser., 2010, no. 2(76), 5–12

[11] Abduragimov E.I., “Suschestvovanie polozhitelnogo resheniya dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka”, Vestn. SamGU. Estestvennonauchn. ser., 2014, no. 10(121), 9–16 | Zbl

[12] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982

[13] Abduragimov G.E., Abduragimova P.E., Kuramagomedova M.M., “O suschestvovanii i edinstvennosti polozhitelnogo resheniya kraevoi zadachi dlya nelineinogo obyknovennogo differentsialnogo uravneniya chetnogo poryadka”, Vestn. rossiiskikh univ. Matem., 26:136 (2021), 341–347 | Zbl

[14] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR