Voir la notice de l'article provenant de la source Math-Net.Ru
@article{IVM_2023_9_a1, author = {G. E. Abduragimov}, title = {On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order}, journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika}, pages = {20--26}, publisher = {mathdoc}, number = {9}, year = {2023}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/IVM_2023_9_a1/} }
TY - JOUR AU - G. E. Abduragimov TI - On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 20 EP - 26 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/IVM_2023_9_a1/ LA - ru ID - IVM_2023_9_a1 ER -
%0 Journal Article %A G. E. Abduragimov %T On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order %J Izvestiâ vysših učebnyh zavedenij. Matematika %D 2023 %P 20-26 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/IVM_2023_9_a1/ %G ru %F IVM_2023_9_a1
G. E. Abduragimov. On the existence and uniqueness of a positive solution to a boundary value problem for a nonlinear ordinary differential equation of $4n$ order. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 9 (2023), pp. 20-26. http://geodesic.mathdoc.fr/item/IVM_2023_9_a1/
[1] Kannan R., Schuur J., “Boundary value problems for even order nonlinear ordinary differential equations”, Bull. Amer. Math. Soc., 82:1 (1976), 80–82 | DOI | MR | Zbl
[2] Orudzhev E.G., “Kraevye zadachi dlya differentsialnykh uravnenii chetnogo poryadka s kratnymi kharakteristikami”, Dokl. RAN, 368:1 (1999), 14–17 | MR | Zbl
[3] Baranetsky Ya.O., Yarka U., “On a class of boundary value problems for differential equations of even order Operator”, Matt. Methods Phys. Fur. Polya, 2 (1999), 1–6 | MR
[4] Liu Y., “Solutions of two-point boundary value problems for even-order differential equations”, J. Math. Anal. Appl., 323:1 (2006), 721–740 | DOI | MR | Zbl
[5] Stanek S., “Nonlocal singular boundary value problems for even-order differential equations”, Mem. Diff. Equat. Math. Phys., 40:1 (2006), 91–104 | MR
[6] Bica M., Curila M., Curila S., “Two-point boundary value problems associated to functional differential equations of even order solved by iterated splines”, Appl. Numer. Math., 110 (2016), 128–147 | DOI | MR | Zbl
[7] Zulfugarova R.T., “Ob odnoi spektralnoi zadache dlya differentsialnogo uravneniya chetnogo poryadka s odnim kratnym kharakteristicheskim kornem”, Probl. sovremen. nauki i obrazovaniya, 12:132 (2018), 1–6
[8] Qiu W., Xu D., Zhou J., Guo J., “An efficient Sinc-collocation method via the DE transformation for eighth-order boundary value problems”, J. Comput. Appl. Math., 408 (2022), 114136 | DOI | MR | Zbl
[9] Abduragimov E.I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo obyknovennogo differentsialnogo uravneniya chetvertogo poryadka”, Izv. vuzov. Matem., 2006, no. 8, 3–6 | MR
[10] Abduragimov E.I., “Polozhitelnoe reshenie dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka i chislennyi metod ego postroeniya”, Vestn. SamGU. Estestvennonauchn. ser., 2010, no. 2(76), 5–12
[11] Abduragimov E.I., “Suschestvovanie polozhitelnogo resheniya dvukhtochechnoi kraevoi zadachi dlya odnogo nelineinogo ODU chetvertogo poryadka”, Vestn. SamGU. Estestvennonauchn. ser., 2014, no. 10(121), 9–16 | Zbl
[12] Na Ts., Vychislitelnye metody resheniya prikladnykh granichnykh zadach, Mir, M., 1982
[13] Abduragimov G.E., Abduragimova P.E., Kuramagomedova M.M., “O suschestvovanii i edinstvennosti polozhitelnogo resheniya kraevoi zadachi dlya nelineinogo obyknovennogo differentsialnogo uravneniya chetnogo poryadka”, Vestn. rossiiskikh univ. Matem., 26:136 (2021), 341–347 | Zbl
[14] Krasnoselskii M.A., Polozhitelnye resheniya operatornykh uravnenii, Fizmatgiz, M., 1962 | MR