Large-scale equivalence of norms of Radon transform and initial function
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 87-92.

Voir la notice de l'article provenant de la source Math-Net.Ru

The purpose of the topic of the article in the future is to establish the equivalence in their norms of the problems of recovery the Computed Tomography and the Computational (numerical) diameter (C(N)D), which was in 2019 previously performed in the case of functions of two variables. And this was based on the equivalence of the corresponding norms proved by Frank Natterer in the same two-dimensional Sobolev spaces. In this article, for the case of functions of any dimension, a large-scale equivalence in its norm of the Radon transform and the function that generated it is established.
Mots-clés : Radon transform
Keywords: flexible Hilbert Sobolev space, flexible Hilbert Sobolev-Radon space, equivalence of transformations in their norms.
@article{IVM_2023_8_a9,
     author = {N. Temirgaliyev and G. E. Taugynbayeva and A. Zh. Zhubanysheva},
     title = {Large-scale equivalence of norms of {Radon} transform and initial function},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {87--92},
     publisher = {mathdoc},
     number = {8},
     year = {2023},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a9/}
}
TY  - JOUR
AU  - N. Temirgaliyev
AU  - G. E. Taugynbayeva
AU  - A. Zh. Zhubanysheva
TI  - Large-scale equivalence of norms of Radon transform and initial function
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 87
EP  - 92
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a9/
LA  - ru
ID  - IVM_2023_8_a9
ER  - 
%0 Journal Article
%A N. Temirgaliyev
%A G. E. Taugynbayeva
%A A. Zh. Zhubanysheva
%T Large-scale equivalence of norms of Radon transform and initial function
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 87-92
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a9/
%G ru
%F IVM_2023_8_a9
N. Temirgaliyev; G. E. Taugynbayeva; A. Zh. Zhubanysheva. Large-scale equivalence of norms of Radon transform and initial function. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 87-92. http://geodesic.mathdoc.fr/item/IVM_2023_8_a9/

[1] Temirgaliev N., Abikenova Sh.K., Azhgaliev Sh.U., Taugynbaeva G.E., Zhubanysheva A.Zh., “Theory of Radon Transform in the Concept of Computational $($Numerical$)$ Diameter and Methods of the Quasi-Monte Carlo Theory”, Bulletin of the L.N. Gumilyov Eurasian National Univ. Math. Comp. Sci. Mech. Ser., 129:4 (2019), 8–53 | MR

[2] Temirgaliev N., Abikenova Sh.K., Azhgaliev Sh.U., Taugynbaeva G.E., “Preobrazovanie Radona v skheme K$($V$)$P-issledovanii i teorii kvazi Monte-Karlo”, Izv. vuzov. Matem., 2020, no. 3, 98–104

[3] Natterer F., The Mathematics of Computerized Tomography, SIAM: Society for Industrial and Appl. Math., 2001 | MR | Zbl

[4] Natterer F., “A Sobolev Space Analysis of Picture Reconstruction”, SIAM J. Appl. Math., 39:3 (1980), 402–411 | DOI | MR | Zbl

[5] Gelfand I.M., Graev M.I., Vilenkin N.Ya., Integralnaya geometriya i svyazannye s nei voprosy teorii predstavlenii, GIFML, M., 1962 | MR

[6] Sharafutdinov V.A., “Preobrazovanie Radona na prostranstvakh Soboleva”, Sib. matem. zhurn., 62:3 (2021), 686–710