Optimal velocity distributions in the design of supercavitating hydrofoils
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 71-77
Cet article a éte moissonné depuis la source Math-Net.Ru
In the paper, the proofs of theorems formulated in the work by S.E. Gazizova, D.V. Maklakov (LJM, 42 (8), 2021) are sketched out. The theorems serve as a basis for designing supercavitating hydrofoils that have a minimum drag coefficient for a given lift coefficient. Thus, the maximum lift-to-drag ratio is achieved.
Keywords:
nonlinear functional, absolute minimum, Jensen's inequality.
@article{IVM_2023_8_a7,
author = {D. V. Maklakov and S. E. Gazizova and I. R. Kayumov},
title = {Optimal velocity distributions in the design of supercavitating hydrofoils},
journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
pages = {71--77},
year = {2023},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a7/}
}
TY - JOUR AU - D. V. Maklakov AU - S. E. Gazizova AU - I. R. Kayumov TI - Optimal velocity distributions in the design of supercavitating hydrofoils JO - Izvestiâ vysših učebnyh zavedenij. Matematika PY - 2023 SP - 71 EP - 77 IS - 8 UR - http://geodesic.mathdoc.fr/item/IVM_2023_8_a7/ LA - ru ID - IVM_2023_8_a7 ER -
D. V. Maklakov; S. E. Gazizova; I. R. Kayumov. Optimal velocity distributions in the design of supercavitating hydrofoils. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 71-77. http://geodesic.mathdoc.fr/item/IVM_2023_8_a7/
[1] Gazizova S.E., Maklakov D.V., “Optimum shapes of supercavitating hydrofoils at zero cavitation number”, Lobachevskii J. Math., 42:8 (2021), 1969–1976 | DOI | MR | Zbl
[2] Gurevich M.I., Teoriya strui idealnoi zhidkosti, 2-e izd., Nauka, M., 1979
[3] Khardi G.G., Littlvud D.E., Polia G., Neeravnstva, IL, M., 1948