Optimal velocity distributions in the design of supercavitating hydrofoils
Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 71-77 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the paper, the proofs of theorems formulated in the work by S.E. Gazizova, D.V. Maklakov (LJM, 42 (8), 2021) are sketched out. The theorems serve as a basis for designing supercavitating hydrofoils that have a minimum drag coefficient for a given lift coefficient. Thus, the maximum lift-to-drag ratio is achieved.
Keywords: nonlinear functional, absolute minimum, Jensen's inequality.
@article{IVM_2023_8_a7,
     author = {D. V. Maklakov and S. E. Gazizova and I. R. Kayumov},
     title = {Optimal velocity distributions in the design of supercavitating hydrofoils},
     journal = {Izvesti\^a vys\v{s}ih u\v{c}ebnyh zavedenij. Matematika},
     pages = {71--77},
     year = {2023},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/IVM_2023_8_a7/}
}
TY  - JOUR
AU  - D. V. Maklakov
AU  - S. E. Gazizova
AU  - I. R. Kayumov
TI  - Optimal velocity distributions in the design of supercavitating hydrofoils
JO  - Izvestiâ vysših učebnyh zavedenij. Matematika
PY  - 2023
SP  - 71
EP  - 77
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/IVM_2023_8_a7/
LA  - ru
ID  - IVM_2023_8_a7
ER  - 
%0 Journal Article
%A D. V. Maklakov
%A S. E. Gazizova
%A I. R. Kayumov
%T Optimal velocity distributions in the design of supercavitating hydrofoils
%J Izvestiâ vysših učebnyh zavedenij. Matematika
%D 2023
%P 71-77
%N 8
%U http://geodesic.mathdoc.fr/item/IVM_2023_8_a7/
%G ru
%F IVM_2023_8_a7
D. V. Maklakov; S. E. Gazizova; I. R. Kayumov. Optimal velocity distributions in the design of supercavitating hydrofoils. Izvestiâ vysših učebnyh zavedenij. Matematika, no. 8 (2023), pp. 71-77. http://geodesic.mathdoc.fr/item/IVM_2023_8_a7/

[1] Gazizova S.E., Maklakov D.V., “Optimum shapes of supercavitating hydrofoils at zero cavitation number”, Lobachevskii J. Math., 42:8 (2021), 1969–1976 | DOI | MR | Zbl

[2] Gurevich M.I., Teoriya strui idealnoi zhidkosti, 2-e izd., Nauka, M., 1979

[3] Khardi G.G., Littlvud D.E., Polia G., Neeravnstva, IL, M., 1948